

 Powering Institutional Research with R

 Thomas Jay Benjamin

 Lynzee Murray

 2023-10-19

Preface

This online reference guide has been developed to accompany the October 19, 2023 workshop of the Ohio Association for Institutional Research and Planning, held at Mount Vernon, Ohio.

The workshop will follow a timeline aligned to the sections of this reference guide:

	Chapter 1: Software setup and overview

	Chapter 2: Importing and cleaning data

	Chapter 3: Statistical analyses & data visualizations

	Chapter 4: Building parameterized reports

	Chapter 5: Collaborating on code

This reference guide is designed for institutional researchers, by institutional researchers, so it’s chock full of examples relevant to IR and often compares R functions to what you might use in Microsoft Excel.

1 Software setup and overview

1.1 Installation

First, we’ll want to install the R software (R Core Team 2023). Go to https://r-project.org and follow the download link.

That will take you to the Comprehensive R Archive Network, or CRAN, which is “a network of servers that store identical, up-to-date, versions of code and documentation for R.”

The closest CRAN mirror for Institutional Researchers working in Ohio is hosted by Case Western Reserve University. Its web address is https://cran.case.edu.

Choose the distribution appropriate for your operating system under “Download and Install R,” then click on the link for “install R for the first time,” and then finally the larger “Download R…” link. Accept the licenses and the default settings.

1.2 Using the R Terminal

You should now be able to find R listed among your installed programs. Go ahead and run it. You should see a screen like this:

[image: The R Guided User Interface (GUI).]

The inner window is the R Console, also called the R Terminal, which is the R software interface:

[image: The R Console (also called the R Terminal).]

Let’s run our first command. Since R is statistical software after all, let’s use it as a calculator. Enter 1 + 1 and press Enter. You should see the following:

1 + 1

[1] 2

Congrats, you’ve run your first R command!

1.3 Installing R packages

Though base R contains all kinds of helpful functions and tools, installing R packages provide additional functionality.

CRAN includes both the base R system and an array of approved R packages.

One such package that we’ll be using is tidyverse, a collection of R packages that make data analysis in R better. We’ll learn more about tidyverse in Chapter 2.

To install the package, run the following command in the terminal:1

install.packages("tidyverse")

Warning

Note that the package name must be in quotes ("") in the install.packages() command.

When you first install an R package in a session, you will be prompted to choose a CRAN mirror, like you did when you first downloaded R:

[image: A listing of CRAN mirrors.]

We’ll choose USA (OH) [https], which is the mirror hosted in Ohio by Case.

Tip

See Section 1.6.5 for details on how to set your default CRAN repository.

We’ll install additional packages later.

Accessing R in the basic R terminal is fairly limited, so we can close out of the program (or enter the q() command). R will ask you if you’d like to save the workspace image - just click “No”.

1.4 Using an IDE

The better way to work with R is to use an integrated development environment, or IDE. The IDE includes the R Terminal that will show the R output, but also additional helpful features like a file editor (to work with a script), a file browser, an image viewer (to view graph and other figure output), an R object viewer, R help text, and more.

1.4.1 R Studio

One popular IDE for R is the open source edition of R Studio, developed by posit, a company that contributes greatly to various R packages and tools, including Quarto which we’ll use in Chapter 4. It can be downloaded at https://posit.co/products/open-source/rstudio/.

After you install and run for the first time, and let it detect the installation of R, your screen should look like this:

[image: The R Studio IDE interface.]

On the left is the R Console, with a tab for your OS Terminal. On the top right is the R environment, an R object viewer, with additional tabs for history, etc. On the bottom right is a file viewer, with additoinal tabs for plots, packages, help, and more.

1.4.2 Visual Studio Code

One popular alternative to R Studio is Visual Studio Code. Visual Studio Code, or VS Code, is developed by Microsoft, and designed for a wide range of programming languages, supported by many extensions. Visual Studio Code’s source code is open source, but has additional Microsoft capabilities.2 Head to https://code.visualstudio.com to download Visual Studio Code.

Note

Since Visual Studio Code is designed to work with many languages, you’ll need to complete additional steps to configure VS Code for working with R. For this reason, it may be best to begin using R Studio and revisit VS Code at a later time. However, VS Code does include additonal features and better integration with Git and GitHub, which will be detailed in Chapter 5.

You’ll then need to install the R extension for Visual Studio Code which can be done using the Extensions module on the far left (or using Ctrl+Shift+X). You’ll also need to install the langugageserver package and want to install the httpgd package so that Visual Studio Code can display help text and plots, respectively. Refer back to Section 1.3 for details how to install packages.

Depending on how you installed R, you may need to point Visual Studio Code to your R installation. Enter Settings (File > Preferences > Settings or Ctrl+,) then type or look for RTerm for your operating system. Point this to your instance of R (e.g. C:\Program Files\R\R-4.3.1\bin\R.exe).

[image: The Visual Studio Code interface.]

On the far left is a set of icons for the various modules, with the first selected for File Explorer and the R environment icon also visible. On the right is the Welcome window; this area will show file contents and view output when requested. On the bottom is a set of terminals, one of which is for R.

1.5 Creating a project

Irrespective of the IDE you are using, you’ll use folders on your computer to hold a file or set of files for an R project. Go ahead and create a new folder in a location on your computer, such as Documents\MyFirstRProject\.

Depending on your IDE, you’ll open your project by:

	In R Studio, you’ll first click on “Project: (None)” in the upper right, then “New Project”, then “Existing Directory”, then point to the folder you created.

	In VS Code, you’ll click “Open Folder” from the Welcome screen.

Tip

If you end up with a lot of files, you can create folders within your project folder. This can help keep your project organized.

1.6 Writing an R script

Up until now, we’ve entered commands directly into the R terminal. But much of the power of using R comes from writing many lines of code that work together.

To do this, we can create files that contain such code, as scripts.

Create a new .R file in your project folder. You can call it anything you’d like, such as script.R. By using the .R (or .r) extension, you’re indicating that the file is an R script.

At the top of the file we want to load any R packages that we’ll be using. We do this with the library() function. Let’s load tidyverse, then run our code (by clicking the Run button):

script.R

library("tidyverse")

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.3 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Notice that the output shows the exact packages loaded as part of tidyverse. Not all packages have an output, but many do display some helpful information. The conflicts section notes that certain functionality from base R (stats) is masked by the packages loaded. This means when we run a function like filter(), by default it will now use the version from dplyr, which is part of tidyverse. We can always explicitly run a certain version by entering a function in the format package::function(), like stats::filter().

Important

Note that we never include an install.packages() command in our R script, only in the terminal. We don’t want to modify our computer using our script, and this is espeically important when we get to sharing code!

Now we can add additional code to the script. Let’s create a new object my_fav_number and assign it the value of 2. We’ll then ask the system to print out that object, so that we can see the value. Don’t worry, we’ll go over exactly what is happening here in Chapter 2.

script.R

library("tidyverse")

my_fav_number <- 2

print(my_fav_number)

Note

print() (and library()) are functions that take parameters (also called arguments). These functions do something with what they are given. You can think back to math class about functions: f(x)f(x) is a function that is doing something with the value passed to it (xx).

You’ll use functions with multiple parameters in Chapter 2. Typically, additional parameters add options on how the something is being done.

Finally, let’s add notes to ourselves so that we can remember what our code is doing. To do this, we use comments. In R, comments are denoted by the # symbol. When R encounters a # symbol, everything in the same line after that symbol is ignored when running the code. We always add a space between the # symbol and the text we’d like to use as a comment.

We can use comments at the end of a line of code to describe what is happening in that line, and we can write a comment as a whole line in the code to show what is happening in sections of code:

script.R

load libraries
library("tidyverse")

my_fav_number <- 2 # 2 is my favorite number

print(my_fav_number) # print out the stored value

Now that we’ve written our first R script (!), we can run it. We can either run the entire script at once, or walk through the code line-by-line with Shift-Ctrl. Walking through code line-by-line can be a great way to develop code and test as you go. You should see the terminal return:

[1] 2

A few notes about keeping your code clean:

	Use blank lines to separate logically separate lines of code.

	Use spaces properly around characters and symbols.

	Use comments to keep your code comprehensible.

We’ll go over additional notes about writing clean code in the coming chapters.

Exersices

1.6.1 Exercise 1

In Chapter 2 we’ll use the package readxl to read in data from Excel files, since IR professionals often encounter data we need to work with in Excel files! How would you install the readxl package?

Code
install.packages("readxl")

1.6.2 Exercise 2

Start a new R script that loads the readxl package. Include a comment to remind you of what is happening.

Code
load libraries
library("readxl") # to read data from Excel files

Extra: Keeping R up-to-date

1.6.3 Updating R packages

In the R terminal, run:

update.packages()

Packages with new updates will be detected and you will be prompted to respond Y or yes to accept.

If you want all packages updated without your confirmation, you can add the ask = FALSE argument:

update.packages(ask = FALSE)

Tip

You will see a warning when packages are built under a different version of R than you are running. If you see this, you likely want to update your version of R.

1.6.4 Updating R

The installr package can assist with keeping the R installation up-to-date. In the terminal, run the following:

installr::updateR()

Tip

You will be prompted as to whether you’d like to copy over all packages from the current version of R. This is a good idea!

Extra: R Profile and Environment

R will read certain options from special files that you can modify:

1.6.5 R profile

Your R profile can contain a range of settings to customize how you interact with R.

The usethis package can be used to edit your R profile:

usethis::edit_r_profile()

A new window will open with your R profile file that you can edit.

For example, you may want to set your default CRAN mirror to the one hosted at Case, since it is in Ohio and you may be as well. Add the following line to your R profile file:

.Rprofile

options(repos=c(CRAN="https://cran.case.edu/"))

When done, save the file, then close all R terminals and reopen them.

1.6.6 R environment

The R environment can store variables that you can call upon using special R functions. It is a great way to keep keys and other secrets out of your code but still accessible.

The usethis package can be used to easily edit your R environment:

usethis::edit_r_envrion()

To store a variable named test_var, add the following to the file:

.Renviron

test_var:"this is my test value"

When done, save the file, then close all R terminals and reopen them.

You’ll be able to access such variables like so:

Sys.getenv("test_var")

[1] "this is my test value"

Warning

Some packages request that you store things like API keys as specified environment variables. You can also use this to store common URLs, including FTP sites, but keep in mind that they are accessible directly in the .Renviron file on your computer.

	Yes, you can also use the menus to install packages, but we won’t be using this interface for long.↩︎

	Check out https://vscodium.com for a version without these Microsoft customizations.↩︎

2 Importing and cleaning data

2.1 Creating R data objects

We’re able to work with data in R as objects. You define an object by selecting a name, and assigning it some sort of value. We’ll illustrate this with a few different kinds of data, then later we’ll instead work with reading in data from files.

We assign an object a value using the <- sequence. Let’s try. After assigning your new object a value, you can navigate to it in the R object viewer in your IDE (R Studio or Visual Studio Code). To display in this guide, we’ll use print().

myobject <- 2

print(myobject)

[1] 2

We can store other kinds of data, like text, which is called a string. Strings are always "wrapped in quotes" to be handled properly.

mysecondobject <- "this is a string"

print(mysecondobject)

[1] "this is a string"

And of course, we can store more complex datasets than single values. We can create a list with the special combine c() function. You can think of a list as a row of data:

mythirdobject <- c(1, 2, 3)

print(mythirdobject)

[1] 1 2 3

Our R object explorer might be starting to get a little cluttered with these example objects. You can remove them in the GUI or you can run the rm() command to delete them:

rm(myobject)
rm(mysecondobject)
rm(mythirdobject)

2.2 Importing data

Now that we’ve learned how to work with R data objects, let’s discuss working with actual data. First, of course, we’ll need to get the data into R. How we get the data into R depends on how the data is stored and where the data is stored. Let’s consider each:

2.2.1 By file format

Most data files are stored in one of two common formats: Comma-separated values (.csv) and Microsoft Excel files (.xlsx). There are great packages in R to handle these kinds of imports.

First, readr, includes functions to import data from those .csv files, primarily read_csv(). You’ll need to load the readr library, then pass it a filename or URL.

Warning

Remember, you’ll need to run install.packages() to install the package before you can load it. See Chapter 1 for details on installing packages.

library("readr")

mydata <- read_csv("mydatafile.csv")

For modern Excel files (.xlsx), we use read_xlsx() from the readxl package.

library("readxl")

mydata <- read_xlsx("mydatafile.xlsx")

2.2.2 By file location

The other important difference is where your data files reside. If you have the data locally, you can move or copy the files into your project directory. When they are in your project directory, you can simply pass the filename to the appropriate function (e.g. read_csv() or read_xlsx()).

If the file exists on the internet, you may be able to pass the URL (in "" quotes) to a function like read_csv(). You can also use the curl package to download the file using curl_download() and set a filename for the location on your computer, then follow the instructions for a local file above.

The curl package can also be used to work with FTP/SFTP servers. Since you’ll need to pass credentials to the server in code, you’ll want to look into the R environment file as detailed in Section 1.6.6.

library("curl")

2.2.3 From a database

If your data is stored in a database, it’s likely that you’ll be able to connect to your database using R. The DBI package details how to connect to your database, either by using ODBC or by specifying a driver. The DBI package includes such functions as dbReadTable() to read in a data table and dbGetQuery() to run a query and grab the result.

2.2.4 From an Application Program Interface (API)

If the data can be provided from a webservice, it’s likely that you can use R to engage with the data. This is beyond the scope of this guide, but packages exist for many popular public data sources that have APIs - for example, you can use the tidycensus package to access the Census Bureau data APIs.

2.3 Tidy data

For much of our data cleaning, manipulation, and analysis in R we’re going to use a collection of packages known as tidyverse (Wickham et al. 2019). The readr package described above is actually part of the compilation! This set of packages is designed to for data science, with a common design and underlying data structures. We can load the entire collection with just one command:

library("tidyverse")

tidyverse is named after a concept of what it means to have tidy data, which Wickham (2014) defines as:

	Each variable is a column; each column is a variable.

	Each observation is a row; each row is an observation.

	Each value is a cell; each cell is a single value.

As institutional researchers, we do come across data that do not meet those requirements from time to time, especially when collected by humans, such as data coded as semester 1, semester 2, etc. tidyverse includes functions, like pivot_longer() and pivot_wider(). Wickham, Çetinkaya-Rundel, and Grolemund (2023) has a great overview of these concepts and functions.

For this guide, we’ll work with data that comes from adminstrative data sources, and already meets the tidy data standards, as it was collected and processed in machine readable formats. That doesn’t mean it won’t need some cleaning, of course.

2.4 In Practice: Dataset #1 – IPEDS data

For working with our first dataset, we’ll of course begin with data from the Integrated Postsecondary Education Data System (IPEDS). Though many IR professionals are used to working with the web interface of the IPEDS data center, we also have the opportunity to interact with the complete data files, which are available as comma-separated values files (.csv) in a compressed format (.zip), or as Access databases. We’ll be working with the .csv files for now.1

If we go to the IPEDS Data Center and click on “Complete Data Files”, we’ll reach this page: https://nces.ed.gov/ipeds/datacenter/DataFiles.aspx. We can hover over the various file links and note that they share a similar stem and file format. Let’s set two variables to start: one to store this URL stem and one to store the latest year available:

IPEDS_url <- "https://nces.ed.gov/ipeds/datacenter/data/"
IPEDS_year <- 2022

Next we’re going to load libraries we’ll need to use. tidyverse should be loaded already but we’ll load it again. The curl package will assist us in downloading files.

load libraries
library("tidyverse")
library("curl")

Let’s use the simple curl_download() function from the curl package. We need to provide it two parameters: a URL to download and a filename for the downloaded file. We can build both of those by concatenating info to match the available links using the variables we stored above. We’ll grab the IPEDS Directory Information data, which comes from the Institutional Characteristics Header component (“HD”), and the Completions component data (“C”). We can create the filenames and URLs by concatenating text fields. In Excel we would use CONCATENATE() or the special concatenation character (&), but using tidyverse we will use str_c():

curl_download(
 str_c(IPEDS_url, "HD", IPEDS_year, ".zip"),
 destfile = str_c("HD", IPEDS_year, ".zip")
)

curl_download(
 str_c(IPEDS_url, "C", IPEDS_year, "_A", ".zip"),
 destfile = str_c("C", IPEDS_year, "_A", ".zip")
)

Next we need to import the downloaded files into R and begin cleaning the data. We’ll start with the directory information data. We’ll begin using read_csv(), which we can use to read in the .csv file contained in the .zip file. We’ll store the data as institutions, then take a peek at the imported data using glimse():

institutions <- read_csv(
 str_c("HD", IPEDS_year, ".zip")
)

Rows: 6256 Columns: 73
── Column specification ──
Delimiter: ","
chr (23): INSTNM, IALIAS, ADDR, CITY, STABBR, ZIP, CHFNM, CHFTITLE, EIN, UEI...
dbl (50): UNITID, FIPS, OBEREG, GENTELE, OPEFLAG, SECTOR, ICLEVEL, CONTROL, ...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

glimpse(institutions)

Rows: 6,256
Columns: 73
$ UNITID <dbl> 100654, 100663, 100690, 100706, 100724, 100733, 100751, 10076…
$ INSTNM <chr> "Alabama A & M University", "University of Alabama at Birming…
$ IALIAS <chr> "AAMU", "UAB", "Southern Christian University Regions Univer…
$ ADDR <chr> "4900 Meridian Street", "Administration Bldg Suite 1070", "12…
$ CITY <chr> "Normal", "Birmingham", "Montgomery", "Huntsville", "Montgome…
$ STABBR <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "…
$ ZIP <chr> "35762", "35294-0110", "36117-3553", "35899", "36104-0271", "…
$ FIPS <dbl> 1, 1…
$ OBEREG <dbl> 5, 5…
$ CHFNM <chr> "Dr. Daniel K. Wims", "Ray L. Watts", "Michael C.Turner", "Ch…
$ CHFTITLE <chr> "President", "President", "President", "President", "Presiden…
$ GENTELE <dbl> 2.563725e+09, 2.059344e+09, 3.343874e+13, 2.568246e+09, 3.342…
$ EIN <chr> "636001109", "636005396", "237034324", "630520830", "63600110…
$ UEIS <chr> "JDVGS67MSLH7", "YND4PLMC9AN7", "RB27R4GLDKE7", "HB6KNGVNJRU1…
$ OPEID <chr> "00100200", "00105200", "02503400", "00105500", "00100500", "…
$ OPEFLAG <dbl> 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ WEBADDR <chr> "www.aamu.edu/", "https://www.uab.edu/", "https://www.amridge…
$ ADMINURL <chr> "https://www.aamu.edu/admissions-aid/index.html", "https://ww…
$ FAIDURL <chr> "https://www.aamu.edu/admissions-aid/financial-aid/", "https:…
$ APPLURL <chr> "https://www.aamu.edu/admissions-aid/undergraduate-admissions…
$ NPRICURL <chr> "www.aamu.edu/admissions-aid/tuition-fees/net-price-calculato…
$ VETURL <chr> NA, "https://www.uab.edu/students/veterans", "https://www.amr…
$ ATHURL <chr> NA, "https://www.uab.edu/registrar/students", NA, "www.uah.ed…
$ DISAURL <chr> "https://www.aamu.edu/administrativeoffices/VADS/Pages/Disabi…
$ SECTOR <dbl> 1, 1, 2, 1, 1, 0, 1, 4, 1, 1, 1, 2, 4, 3, 4, 4, 2, 4, 9, 4, 4…
$ ICLEVEL <dbl> 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 2…
$ CONTROL <dbl> 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 3, 1, 1…
$ HLOFFER <dbl> 9, 9, 9, 9, 9, 9, 9, 3, 7, 9, 9, 5, 3, 9, 3, 3, 9, 3, 2, 3, 3…
$ UGOFFER <dbl> 1, 1…
$ GROFFER <dbl> 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2…
$ HDEGOFR1 <dbl> 12, 11, 12, 11, 11, 11, 11, 40, 20, 11, 11, 30, 40, 13, 40, 4…
$ DEGGRANT <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1…
$ HBCU <dbl> 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2…
$ HOSPITAL <dbl> 2, 1, 2, 2, 2, -2, 2, -2, 2, 2, 2, 2, -2, 2, -2, -2, 2, -2, -…
$ MEDICAL <dbl> 2, 1, 2, 2, 2, -2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
$ TRIBAL <dbl> 2, 2…
$ LOCALE <dbl> 12, 12, 12, 12, 12, 13, 13, 32, 31, 12, 13, 12, 41, 12, 32, 3…
$ OPENPUBL <dbl> 1, 1…
$ ACT <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "…
$ NEWID <dbl> -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -…
$ DEATHYR <dbl> -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -…
$ CLOSEDAT <chr> "-2", "-2", "-2", "-2", "-2", "-2", "-2", "-2", "-2", "-2", "…
$ CYACTIVE <dbl> 1, 1…
$ POSTSEC <dbl> 1, 1…
$ PSEFLAG <dbl> 1, 1…
$ PSET4FLG <dbl> 1, 1…
$ RPTMTH <dbl> 1, 1, 1, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, …
$ INSTCAT <dbl> 2, 2, 2, 2, 2, -2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 4, 2, 4, 6, 4, …
$ C21BASIC <dbl> 18, 15, 20, 15, 17, -2, 15, 5, 22, 18, 15, 21, 4, 22, 2, 4, 1…
$ C21IPUG <dbl> 16, 14, 20, 17, 13, -2, 17, 2, 16, 16, 17, 9, 2, 20, 1, 2, 19…
$ C21IPGRD <dbl> 18, 14, 18, 17, 18, -2, 15, 0, 6, 4, 14, 0, 0, 7, 0, 0, 16, 0…
$ C21UGPRF <dbl> 10, 9, 5, 15, 10, -2, 12, 1, 5, 7, 14, 12, 2, 7, 2, 2, 7, 2, …
$ C21ENPRF <dbl> 4, 5, 6, 4, 3, -2, 4, 1, 3, 4, 4, 2, 1, 4, 1, 1, 5, 1, -2, 1,…
$ C21SZSET <dbl> 14, 15, 6, 13, 14, -2, 16, 2, 9, 13, 15, 11, 2, 6, 2, 3, 10, …
$ C18BASIC <dbl> 18, 15, 20, 16, 19, -2, 15, 2, 22, 18, 15, 21, 1, 20, 5, 5, 1…
$ C15BASIC <dbl> 18, 15, 20, 16, 19, -2, 16, 1, 22, 18, 16, 21, 1, 22, 8, 1, 2…
$ CCBASIC <dbl> 18, 15, 21, 15, 18, -2, 16, 2, 22, 18, 16, 21, 2, 23, 2, 5, 2…
$ CARNEGIE <dbl> 16, 15, 51, 16, 21, -2, 15, 40, 32, 21, 15, 31, 40, 40, 40, 4…
$ LANDGRNT <dbl> 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2…
$ INSTSIZE <dbl> 3, 5, 1, 3, 2, -2, 5, 2, 2, 3, 5, 1, 2, 1, 2, 3, 2, 2, 1, 2, …
$ F1SYSTYP <dbl> 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1…
$ F1SYSNAM <chr> "-2", "The University of Alabama System", "-2", "The Universi…
$ F1SYSCOD <dbl> -2, 101050, -2, 101050, -2, 101050, 101050, 101030, -2, 10104…
$ CBSA <dbl> 26620, 13820, 33860, 26620, 33860, 46220, 46220, 10760, 26620…
$ CBSATYPE <dbl> 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2…
$ CSA <dbl> 290, 142, 388, 290, 388, -2, -2, 388, 290, 388, 194, 142, 194…
$ COUNTYCD <dbl> 1089, 1073, 1101, 1089, 1101, 1125, 1125, 1123, 1083, 1101, 1…
$ COUNTYNM <chr> "Madison County", "Jefferson County", "Montgomery County", "M…
$ CNGDSTCD <dbl> 105, 107, 102, 105, 107, 107, 107, 103, 105, 102, 103, 107, 1…
$ LONGITUD <dbl> -86.56850, -86.79935, -86.17401, -86.64045, -86.29568, -87.52…
$ LATITUDE <dbl> 34.78337, 33.50570, 32.36261, 34.72456, 32.36432, 33.20701, 3…
$ DFRCGID <dbl> 107, 92, 125, 92, 98, -2, 91, 73, 134, 107, 91, 132, 70, 199,…
$ DFRCUSCG <dbl> 1, 1, 2, 2, 1, -2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, …

That’s a lot of data! Since we’re not using all of the variables, let’s use select to pull out a subset of them. We’ll use the select() function to do this.

Important

This is an important place to teach an R technique that makes code much easier and cleaner to write. If you look at the documentation for different functions, you’ll note that typically, the first parameter of a function is a data object to use.

If we have several things we need to do with a data object, we could end up writing the name of the data object over, and over, and over, cluttering up our code.

R uses a special character sequence |>, called the pipe, that takes the output of one command and uses it as the following command. (Some older documentation uses the sequence %>%, which also works, but |> is now preferred.)

institutions <- institutions |>
 select(UNITID, INSTNM, OPEID, STABBR, SECTOR, HLOFFER)

glimpse(institutions)

Rows: 6,256
Columns: 6
$ UNITID <dbl> 100654, 100663, 100690, 100706, 100724, 100733, 100751, 100760…
$ INSTNM <chr> "Alabama A & M University", "University of Alabama at Birmingh…
$ OPEID <chr> "00100200", "00105200", "02503400", "00105500", "00100500", "0…
$ STABBR <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "A…
$ SECTOR <dbl> 1, 1, 2, 1, 1, 0, 1, 4, 1, 1, 1, 2, 4, 3, 4, 4, 2, 4, 9, 4, 4,…
$ HLOFFER <dbl> 9, 9, 9, 9, 9, 9, 9, 3, 7, 9, 9, 5, 3, 9, 3, 3, 9, 3, 2, 3, 3,…

Let’s move on to importing and cleaning the IPEDS Completions data. We’ll again use read_csv() to read in the data and store it in an object called completions. Since we’re familiar with the completions data, we know that we really only need major #1 and can filter out secondary majors. We will ask filter() to keep only those rows equal to 1 (== 1). Finally, similar to above, we only care about a few of the variables for now.

completions <- read_csv(
 str_c("C", IPEDS_year, "_A.zip")
) |>
 filter(MAJORNUM == 1) |>
 select(UNITID, CIPCODE, AWLEVEL, CTOTALT)

Rows: 300877 Columns: 64
── Column specification ──
Delimiter: ","
chr (32): CIPCODE, AWLEVEL, XCTOTALT, XCTOTALM, XCTOTALW, XCAIANT, XCAIANM, ...
dbl (32): UNITID, MAJORNUM, CTOTALT, CTOTALM, CTOTALW, CAIANT, CAIANM, CAIAN...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

glimpse(completions)

Rows: 279,506
Columns: 4
$ UNITID <dbl> 100654, 100654, 100654, 100654, 100654, 100654, 100654, 100654…
$ CIPCODE <chr> "01.0999", "01.1001", "01.1001", "01.1001", "01.9999", "01.999…
$ AWLEVEL <chr> "05", "05", "07", "17", "05", "07", "17", "05", "05", "07", "0…
$ CTOTALT <dbl> 9, 7, 7, 3, 1, 8, 3, 8, 3, 12, 11, 17, 41, 16, 0, 1, 3, 1, 8, …

Now that we have clean directory info (institutions) and clean completions data (completions), let’s combine them. We’ll use the *_join() functions from the tidyverse dplyr package. This is like joining tables in SQL, or for those of you who use Excel like databases, like using VLOOKUP().

We’ll store this combined dataset as combined for now. We need to provide the two data objects we’re joining, and the variable(s) we want to join on:

combined <- left_join(
 institutions,
 completions,
 by = "UNITID",
 keep = TRUE
)

glimpse(combined)

Rows: 279,720
Columns: 10
$ UNITID.x <dbl> 100654, 100654, 100654, 100654, 100654, 100654, 100654, 10065…
$ INSTNM <chr> "Alabama A & M University", "Alabama A & M University", "Alab…
$ OPEID <chr> "00100200", "00100200", "00100200", "00100200", "00100200", "…
$ STABBR <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "…
$ SECTOR <dbl> 1, 1…
$ HLOFFER <dbl> 9, 9…
$ UNITID.y <dbl> 100654, 100654, 100654, 100654, 100654, 100654, 100654, 10065…
$ CIPCODE <chr> "01.0999", "01.1001", "01.1001", "01.1001", "01.9999", "01.99…
$ AWLEVEL <chr> "05", "05", "07", "17", "05", "07", "17", "05", "05", "07", "…
$ CTOTALT <dbl> 9, 7, 7, 3, 1, 8, 3, 8, 3, 12, 11, 17, 41, 16, 0, 1, 3, 1, 8,…

Tip

Note that when we get to more complex functions that would create really long lines of code or nested functions, it’s best to separate your code into multiple lines to keep it readable. R will ignore the line breaks that you create just like it ignores spaces.

The data set is combined and clean, but since it has a row for every credential (or at least unique combinations of level and CIP code) for every institution, it’s pretty large. We’ll work with Ohio data so we can filter again to Ohio institutions:

combined <- combined |>
 filter(STABBR == "OH")

glimpse(combined)

Rows: 12,521
Columns: 10
$ UNITID.x <dbl> 200590, 200590, 200590, 200590, 200590, 200590, 200590, 20059…
$ INSTNM <chr> "ETI Technical College", "ETI Technical College", "ETI Techni…
$ OPEID <chr> "03079000", "03079000", "03079000", "03079000", "03079000", "…
$ STABBR <chr> "OH", "OH", "OH", "OH", "OH", "OH", "OH", "OH", "OH", "OH", "…
$ SECTOR <dbl> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ HLOFFER <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9…
$ UNITID.y <dbl> 200590, 200590, 200590, 200590, 200590, 200590, 200590, 20059…
$ CIPCODE <chr> "22.0301", "46.0401", "48.0508", "51.0801", "51.0801", "51.38…
$ AWLEVEL <chr> "03", "02", "02", "02", "03", "03", "02", "02", "03", "02", "…
$ CTOTALT <dbl> 2, 7, 10, 11, 0, 15, 9, 0, 2, 37, 19, 9, 2, 10, 2, 39, 10, 10…

Much better. But we have two more steps we’d like to do. Note that many of the variables are repeated in the dataset. We can use a special data type, factors, to clean up this data into categorical variables. tidyverse includes a package, forcats, to help with working with categorical data using the factor data type. Let’s do this for SECTOR, AWLEVEL, and CTOTALT:

combined <- combined |>
 mutate(
 SECTOR = as_factor(SECTOR),
 HLOFFER = as_factor(HLOFFER),
 AWLEVEL = as_factor(AWLEVEL)
)

glimpse(combined)

Rows: 12,521
Columns: 10
$ UNITID.x <dbl> 200590, 200590, 200590, 200590, 200590, 200590, 200590, 20059…
$ INSTNM <chr> "ETI Technical College", "ETI Technical College", "ETI Techni…
$ OPEID <chr> "03079000", "03079000", "03079000", "03079000", "03079000", "…
$ STABBR <chr> "OH", "OH", "OH", "OH", "OH", "OH", "OH", "OH", "OH", "OH", "…
$ SECTOR <fct> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ HLOFFER <fct> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9…
$ UNITID.y <dbl> 200590, 200590, 200590, 200590, 200590, 200590, 200590, 20059…
$ CIPCODE <chr> "22.0301", "46.0401", "48.0508", "51.0801", "51.0801", "51.38…
$ AWLEVEL <fct> 03, 02, 02, 02, 03, 03, 02, 02, 03, 02, 03, 07, 17, 07, 06, 0…
$ CTOTALT <dbl> 2, 7, 10, 11, 0, 15, 9, 0, 2, 37, 19, 9, 2, 10, 2, 39, 10, 10…

Lastly, since we want to use the SECTOR variable in particular later, let’s provide it with desciptions that are used in IPEDS:2

combined <- combined |>
 mutate(
 SECTOR = fct_recode(
 SECTOR,
 "Administrative Unit" = "0",
 "Public 4-year or above" = "1",
 "Private nonprofit 4-year or above" = "2",
 "Private for-profit 4-year or above" = "3",
 "Public 2-year" = "4",
 "Private nonprofit 2-year" = "5",
 "Private for-profit 2-year" = "6",
 "Public less-than-2-year" = "7",
 "Private nonprofit less-than-2-year" = "8",
 "Private for-profit less-than-2-year" = "9"
)
)

Note

Once you’re comfortable with many of these cleaning steps, you can revisit the readr function options. You can actually change column types, select variables, etc. all with optional arguments.

2.4.1 Dataset #1 complete code

load libraries
library("tidyverse")
library("curl")

store IPEDS url & data year for use
IPEDS_url <- "https://nces.ed.gov/ipeds/datacenter/data/"
IPEDS_year <- 2022

download data
curl_download(
 str_c(IPEDS_url, "HD", IPEDS_year, ".zip"),
 destfile = str_c("HD", IPEDS_year, ".zip")
)

curl_download(
 str_c(IPEDS_url, "C", IPEDS_year, "_A", ".zip"),
 destfile = str_c("C", IPEDS_year, "_A", ".zip")
)

process institution directory information
institutions <- read_csv(
 str_c("HD", IPEDS_year, ".zip")
) |>
 select(UNITID, INSTNM, OPEID, STABBR, SECTOR, HLOFFER)

process completions data
completions <- read_csv(
 str_c("C", IPEDS_year, "_A.zip")
) |>
 filter(MAJORNUM == 1) |>
 select(UNITID, CIPCODE, AWLEVEL, CTOTALT)

combine datasets, additional cleaning
combined <- left_join(
 institutions,
 completions,
 by = "UNITID",
 keep = TRUE
) |>
 filter(STABBR == "OH") |> #filter to Ohio
 mutate(
 SECTOR = as_factor(SECTOR),
 HLOFFER = as_factor(HLOFFER),
 AWLEVEL = as_factor(AWLEVEL)
) |>
 mutate(
 SECTOR = fct_recode(
 SECTOR,
 "Administrative Unit" = "0",
 "Public 4-year or above" = "1",
 "Private nonprofit 4-year or above" = "2",
 "Private for-profit 4-year or above" = "3",
 "Public 2-year" = "4",
 "Private nonprofit 2-year" = "5",
 "Private for-profit 2-year" = "6",
 "Public less-than-2-year" = "7",
 "Private nonprofit less-than-2-year" = "8",
 "Private for-profit less-than-2-year" = "9"
)
)

2.5 In Practice: Dataset #2 – Occupation Projections data

For our second example dataset, we’ll work with Occupational Projections data from the Ohio Department of Jobs and Family Services, Bureau of Labor Market Information. The Long-Term Projections data by JobsOhio region and Metropolitan Statistical Area (MSA) can be found at https://ohiolmi.com/Home/Projections/ProjectionsHome_08.16.23. As interest in post-graduate outcomes increases throughout higher education, institutional researchers are increasingly working with labor market data.

We’ll begin with the Central Ohio Excel file. If you copy the URL, you’ll get ,https://ohiolmi.com/_docs/PROJ/JobsOhio/Central.xlsx.

Note

If you hover over the file links, you’ll notice that they share a common URL stem (https://ohiolmi.com/_docs/PROJ/JobsOhio/), which will be helpful to use in parameterized reports, covered in Chapter 4.

Let’s store that URL to make it easier to use:

projections_url <- "https://ohiolmi.com/_docs/PROJ/JobsOhio/Central.xlsx"

We’ll pull down the file with curl:

curl_download(projections_url, "projectionsdata.xlsx")

Next we’ll try to import the file as a data object, and then check the results with summary() and glimpse():

projections_data <- read_xlsx("projectionsdata.xlsx")

New names:
• `` -> `...2`
• `` -> `...3`
• `` -> `...4`
• `` -> `...5`
• `` -> `...6`
• `` -> `...7`
• `` -> `...8`
• `` -> `...9`
• `` -> `...10`
• `` -> `...11`
• `` -> `...12`

glimpse(projections_data)

Rows: 501
Columns: 12
$ `JobsOhio Regional Network - Central Region` <chr> "Occupational* Employment…
$...2 <chr> NA, NA, NA, NA, "Occupati…
$...3 <chr> NA, NA, "Employment*", "2…
$...4 <chr> NA, NA, NA, "2030", "Proj…
$...5 <chr> NA, NA, "Change in", "Emp…
$...6 <chr> NA, NA, NA, NA, "Percent"…
$...7 <chr> NA, NA, NA, "Annual Openi…
$...8 <chr> NA, NA, NA, NA, "Exits", …
$...9 <chr> NA, NA, NA, NA, "Transfer…
$...10 <chr> NA, NA, NA, NA, "Total", …
$...11 <chr> NA, NA, NA, "Median Wage"…
$...12 <chr> NA, NA, NA, NA, NA, NA, N…

summary(projections_data)

 JobsOhio Regional Network - Central Region ...2
 Length:501 Length:501
 Class :character Class :character
 Mode :character Mode :character
 ...3 ...4 ...5 ...6
 Length:501 Length:501 Length:501 Length:501
 Class :character Class :character Class :character Class :character
 Mode :character Mode :character Mode :character Mode :character
 ...7 ...8 ...9 ...10
 Length:501 Length:501 Length:501 Length:501
 Class :character Class :character Class :character Class :character
 Mode :character Mode :character Mode :character Mode :character
 ...11 ...12
 Length:501 Length:501
 Class :character Class :character
 Mode :character Mode :character

That returned a bunch of junk, because there are multiple header rows in the file. Luckily, there’s an optional parameter we can add to read_xlsx to skip to the line we want (line 6 has the headers we want), which we can read about in the readxl documentation.

projections_data <- read_xlsx("projectionsdata.xlsx", skip = 5)

New names:
• `` -> `...12`

glimpse(projections_data)

Rows: 496
Columns: 12
$ Code <chr> "00-0000", "11-0000", "11-1011", "11-1021", "11-1…
$ `Occupational Title` <chr> "Total, All Occupations", "Management Occupations…
$ Annual <chr> "1168921", "70397", "1830", "14405", "336", "1777…
$ Projected <dbl> 1261966, 77059, 1671, 15779, 372, 1869, 2668, 413…
$ `2020-2030` <dbl> 93045, 6662, -159, 1374, 36, 92, 131, 37, 252, 10…
$ Percent <dbl> 0.0796, 0.0946, -0.0869, 0.0954, 0.1071, 0.0518, …
$ Growth <dbl> 9304, 666, -16, 137, 4, 9, 13, 4, 25, 10, 96, 9, …
$ Exits <dbl> 50873, 2143, 48, 301, 8, 36, 52, 10, 86, 54, 122,…
$ Transfers <dbl> 79184, 3818, 71, 936, 17, 115, 164, 22, 151, 188,…
$ Total <dbl> 139361, 6627, 103, 1374, 29, 160, 229, 36, 262, 2…
$ `May 2021` <chr> "22.4", "48.2", "80.739999999999995", "47.63", "3…
$...12 <chr> NA, NA, NA, NA, "**", NA, NA, "^", "^", NA, NA, N…

summary(projections_data)

 Code Occupational Title Annual Projected
 Length:496 Length:496 Length:496 Min. : 104
 Class :character Class :character Class :character 1st Qu.: 400
 Mode :character Mode :character Mode :character Median : 976
 Mean : 7667
 3rd Qu.: 2903
 Max. :1261966
 NA's :8
 2020-2030 Percent Growth Exits
 Min. :-1975.0 Min. :-0.35860 Min. :-198.00 Min. : 2.0
 1st Qu.: 6.0 1st Qu.: 0.01740 1st Qu.: 1.00 1st Qu.: 12.0
 Median : 53.0 Median : 0.06970 Median : 5.00 Median : 34.5
 Mean : 566.1 Mean : 0.07336 Mean : 56.61 Mean : 309.3
 3rd Qu.: 216.2 3rd Qu.: 0.12575 3rd Qu.: 22.00 3rd Qu.: 101.2
 Max. :93045.0 Max. : 0.58880 Max. :9304.00 Max. :50873.0
 NA's :8 NA's :8 NA's :8 NA's :8
 Transfers Total May 2021 ...12
 Min. : 1.0 Min. : 5.0 Length:496 Length:496
 1st Qu.: 21.0 1st Qu.: 37.0 Class :character Class :character
 Median : 57.5 Median : 95.5 Mode :character Mode :character
 Mean : 481.4 Mean : 847.3
 3rd Qu.: 179.8 3rd Qu.: 301.8
 Max. :79184.0 Max. :139361.0
 NA's :8 NA's :8

It seems we have a little more data cleaning to do. We need to change the types of a few columns3, rename a few columns, and do some filtering to remove the summary occupations. Let’s use additional parameters in read_xlsx to define types and column names. By providing the column names instead of importing them, we need to change the skip = option to 6 instead of 5.

Note

There’s often more than one way to do something. Instead of providing column names on the import (and changing the skip parameter), we could rename the columns with the rename() function after import.

projections_data <- read_xlsx(
 "projectionsdata.xlsx",
 skip = 6,
 col_names = c(
 "SOC",
 "Occupation",
 "Current_jobs",
 "Projected_jobs",
 "Change_num",
 "Change_pct",
 "Growth",
 "Exits",
 "Transfers",
 "Tot_openings",
 "Wage",
 "Notes"
),
 col_types = c(
 "text",
 "text",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "text"
)
)

glimpse(projections_data)

Rows: 496
Columns: 12
$ SOC <chr> "00-0000", "11-0000", "11-1011", "11-1021", "11-1031", …
$ Occupation <chr> "Total, All Occupations", "Management Occupations", "Ch…
$ Current_jobs <dbl> 1168921, 70397, 1830, 14405, 336, 1777, 2537, 376, 2900…
$ Projected_jobs <dbl> 1261966, 77059, 1671, 15779, 372, 1869, 2668, 413, 3152…
$ Change_num <dbl> 93045, 6662, -159, 1374, 36, 92, 131, 37, 252, 103, 965…
$ Change_pct <dbl> 0.0796, 0.0946, -0.0869, 0.0954, 0.1071, 0.0518, 0.0516…
$ Growth <dbl> 9304, 666, -16, 137, 4, 9, 13, 4, 25, 10, 96, 9, 3, 23,…
$ Exits <dbl> 50873, 2143, 48, 301, 8, 36, 52, 10, 86, 54, 122, 27, 1…
$ Transfers <dbl> 79184, 3818, 71, 936, 17, 115, 164, 22, 151, 188, 298, …
$ Tot_openings <dbl> 139361, 6627, 103, 1374, 29, 160, 229, 36, 262, 252, 51…
$ Wage <dbl> 22.40, 48.20, 80.74, 47.63, 37738.00, 62.05, 61.39, 57.…
$ Notes <chr> NA, NA, NA, NA, "**", NA, NA, "^", "^", NA, NA, NA, NA,…

summary(projections_data)

 SOC Occupation Current_jobs Projected_jobs
 Length:496 Length:496 Min. : 102.0 Min. : 104
 Class :character Class :character 1st Qu.: 397.5 1st Qu.: 400
 Mode :character Mode :character Median : 937.5 Median : 976
 Mean : 7101.0 Mean : 7667
 3rd Qu.: 2729.0 3rd Qu.: 2903
 Max. :1168921.0 Max. :1261966
 NA's :8 NA's :8
 Change_num Change_pct Growth Exits
 Min. :-1975.0 Min. :-0.35860 Min. :-198.00 Min. : 2.0
 1st Qu.: 6.0 1st Qu.: 0.01740 1st Qu.: 1.00 1st Qu.: 12.0
 Median : 53.0 Median : 0.06970 Median : 5.00 Median : 34.5
 Mean : 566.1 Mean : 0.07336 Mean : 56.61 Mean : 309.3
 3rd Qu.: 216.2 3rd Qu.: 0.12575 3rd Qu.: 22.00 3rd Qu.: 101.2
 Max. :93045.0 Max. : 0.58880 Max. :9304.00 Max. :50873.0
 NA's :8 NA's :8 NA's :8 NA's :8
 Transfers Tot_openings Wage Notes
 Min. : 1.0 Min. : 5.0 Min. : 10.04 Length:496
 1st Qu.: 21.0 1st Qu.: 37.0 1st Qu.: 18.13 Class :character
 Median : 57.5 Median : 95.5 Median : 23.53 Mode :character
 Mean : 481.4 Mean : 847.3 Mean : 4994.70
 3rd Qu.: 179.8 3rd Qu.: 301.8 3rd Qu.: 37.24
 Max. :79184.0 Max. :139361.0 Max. :129451.00
 NA's :8 NA's :8 NA's :11

Next, let’s filter the dataset to remove those summary occupations and any notes at the end.

Summary occupations are coded with SOC codes ending in “0000”, so we can quickly identify them. In Excel, we’d likely use the MID() or RIGHT() commands to pull out that sequence. In R’s tidyverse package, we can use str_sub(), which works very similar to these, extracting a subset of the string field based on character position. Negative values mean work from the end.

Any rows with anything other than the SOC code in the SOC column should be ignored. Since SOC codes are 7 characters long, we’ll try to use that. In Excel, we’d use LEN() to get the length, while here we’ll use str_length() from the tidyverse package. Note that in R, equals and not equals (== and !=) are different than in Excel (= and <>)

projections_data <- projections_data |>
 filter(
 str_sub(SOC, -4, -1) != "0000",
 str_length(SOC) == 7
)

glimpse(projections_data)

Rows: 465
Columns: 12
$ SOC <chr> "11-1011", "11-1021", "11-1031", "11-2021", "11-2022", …
$ Occupation <chr> "Chief Executives", "General and Operations Managers", …
$ Current_jobs <dbl> 1830, 14405, 336, 1777, 2537, 376, 2900, 3250, 5457, 13…
$ Projected_jobs <dbl> 1671, 15779, 372, 1869, 2668, 413, 3152, 3353, 6422, 14…
$ Change_num <dbl> -159, 1374, 36, 92, 131, 37, 252, 103, 965, 87, 29, 228…
$ Change_pct <dbl> -0.0869, 0.0954, 0.1071, 0.0518, 0.0516, 0.0984, 0.0869…
$ Growth <dbl> -16, 137, 4, 9, 13, 4, 25, 10, 96, 9, 3, 23, 0, 8, 3, 5…
$ Exits <dbl> 48, 301, 8, 36, 52, 10, 86, 54, 122, 27, 10, 30, 3, 24,…
$ Transfers <dbl> 71, 936, 17, 115, 164, 22, 151, 188, 298, 67, 24, 86, 8…
$ Tot_openings <dbl> 103, 1374, 29, 160, 229, 36, 262, 252, 516, 103, 37, 13…
$ Wage <dbl> 80.74, 47.63, 37738.00, 62.05, 61.39, 57.62, 47.73, 63.…
$ Notes <chr> NA, NA, "**", NA, NA, "^", "^", NA, NA, NA, NA, NA, NA,…

summary(projections_data)

 SOC Occupation Current_jobs Projected_jobs
 Length:465 Length:465 Min. : 102 Min. : 104
 Class :character Class :character 1st Qu.: 376 1st Qu.: 395
 Mode :character Mode :character Median : 841 Median : 902
 Mean : 2425 Mean : 2618
 3rd Qu.: 2296 3rd Qu.: 2583
 Max. :34936 Max. :39662

 Change_num Change_pct Growth Exits
 Min. :-1948.0 Min. :-0.35860 Min. :-195.00 Min. : 2.0
 1st Qu.: 5.0 1st Qu.: 0.01650 1st Qu.: 0.00 1st Qu.: 12.0
 Median : 44.0 Median : 0.06850 Median : 4.00 Median : 30.0
 Mean : 193.9 Mean : 0.07258 Mean : 19.39 Mean : 105.8
 3rd Qu.: 185.0 3rd Qu.: 0.12710 3rd Qu.: 18.00 3rd Qu.: 82.0
 Max. : 8608.0 Max. : 0.58880 Max. : 861.00 Max. :2775.0

 Transfers Tot_openings Wage Notes
 Min. : 1.0 Min. : 5.0 Min. : 10.04 Length:465
 1st Qu.: 21.0 1st Qu.: 36.0 1st Qu.: 18.13 Class :character
 Median : 52.0 Median : 87.0 Median : 23.60 Mode :character
 Mean : 164.6 Mean : 289.8 Mean : 5242.13
 3rd Qu.: 143.0 3rd Qu.: 231.0 3rd Qu.: 37.30
 Max. :3245.0 Max. :6071.0 Max. :129451.00
 NA's :3

And finally, we need to adjust the wage column. It seems that there is a mix of hourly and annual wage figures in this column. Let’s convert all of them to annual wages as a new variable, by multiplying any values below $200/hr by 2,080 hours/yr. We’ll do this by using mutate() to create the new variable, and define it using a case_when().4

projections_data <- projections_data |>
 mutate(
 annual_wage = case_when(
 Wage < 200 ~ Wage * 2080,
 .default = Wage
)
)

glimpse(projections_data)

Rows: 465
Columns: 13
$ SOC <chr> "11-1011", "11-1021", "11-1031", "11-2021", "11-2022", …
$ Occupation <chr> "Chief Executives", "General and Operations Managers", …
$ Current_jobs <dbl> 1830, 14405, 336, 1777, 2537, 376, 2900, 3250, 5457, 13…
$ Projected_jobs <dbl> 1671, 15779, 372, 1869, 2668, 413, 3152, 3353, 6422, 14…
$ Change_num <dbl> -159, 1374, 36, 92, 131, 37, 252, 103, 965, 87, 29, 228…
$ Change_pct <dbl> -0.0869, 0.0954, 0.1071, 0.0518, 0.0516, 0.0984, 0.0869…
$ Growth <dbl> -16, 137, 4, 9, 13, 4, 25, 10, 96, 9, 3, 23, 0, 8, 3, 5…
$ Exits <dbl> 48, 301, 8, 36, 52, 10, 86, 54, 122, 27, 10, 30, 3, 24,…
$ Transfers <dbl> 71, 936, 17, 115, 164, 22, 151, 188, 298, 67, 24, 86, 8…
$ Tot_openings <dbl> 103, 1374, 29, 160, 229, 36, 262, 252, 516, 103, 37, 13…
$ Wage <dbl> 80.74, 47.63, 37738.00, 62.05, 61.39, 57.62, 47.73, 63.…
$ Notes <chr> NA, NA, "**", NA, NA, "^", "^", NA, NA, NA, NA, NA, NA,…
$ annual_wage <dbl> 167939.2, 99070.4, 37738.0, 129064.0, 127691.2, 119849.…

summary(projections_data)

 SOC Occupation Current_jobs Projected_jobs
 Length:465 Length:465 Min. : 102 Min. : 104
 Class :character Class :character 1st Qu.: 376 1st Qu.: 395
 Mode :character Mode :character Median : 841 Median : 902
 Mean : 2425 Mean : 2618
 3rd Qu.: 2296 3rd Qu.: 2583
 Max. :34936 Max. :39662

 Change_num Change_pct Growth Exits
 Min. :-1948.0 Min. :-0.35860 Min. :-195.00 Min. : 2.0
 1st Qu.: 5.0 1st Qu.: 0.01650 1st Qu.: 0.00 1st Qu.: 12.0
 Median : 44.0 Median : 0.06850 Median : 4.00 Median : 30.0
 Mean : 193.9 Mean : 0.07258 Mean : 19.39 Mean : 105.8
 3rd Qu.: 185.0 3rd Qu.: 0.12710 3rd Qu.: 18.00 3rd Qu.: 82.0
 Max. : 8608.0 Max. : 0.58880 Max. : 861.00 Max. :2775.0

 Transfers Tot_openings Wage Notes
 Min. : 1.0 Min. : 5.0 Min. : 10.04 Length:465
 1st Qu.: 21.0 1st Qu.: 36.0 1st Qu.: 18.13 Class :character
 Median : 52.0 Median : 87.0 Median : 23.60 Mode :character
 Mean : 164.6 Mean : 289.8 Mean : 5242.13
 3rd Qu.: 143.0 3rd Qu.: 231.0 3rd Qu.: 37.30
 Max. :3245.0 Max. :6071.0 Max. :129451.00
 NA's :3
 annual_wage
 Min. : 20883
 1st Qu.: 37710
 Median : 48776
 Mean : 57792
 3rd Qu.: 75712
 Max. :179150
 NA's :3

And now we have a clean dataset! We’ll use this further in Chapter 3 and Chapter 4, so let’s show what it looks like all together.

2.5.1 Dataset #2 complete code

load libraries
library("readxl")
library("curl")
library("tidyverse")

define file url
projections_url <- "https://ohiolmi.com/_docs/PROJ/JobsOhio/Central.xlsx"

download file
curl_download(projections_url, "projectionsdata.xlsx")

read file with approrpiate settings
projections_data <- read_xlsx(
 "projectionsdata.xlsx",
 skip = 6,
 col_names = c(
 "SOC",
 "Occupation",
 "Current_jobs",
 "Projected_jobs",
 "Change_num",
 "Change_pct",
 "Growth",
 "Exits",
 "Transfers",
 "Tot_openings",
 "Wage",
 "Notes"
),
 col_types = c(
 "text",
 "text",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "numeric",
 "text"
)
) |>

 # remove summary occupations and notes/blank rows
 filter(
 str_sub(SOC, -4, -1) != "0000",
 str_length(SOC) == 7
) |>

 # create annual wage column so values are consistent
 mutate(
 annual_wage = case_when(
 Wage < 200 ~ Wage * 2080,
 .default = Wage
)
)

Exercises

2.5.2 Exercise 1

Think about the kinds of data that you work with regularly. Is it tidy? How is it stored? What functions will you need to use to work with it in R?

2.5.3 Exercise 2

We used functions from several tidyverse packages. Especially when learning, it’s nice to have quick references. Tidyverse has a series of official cheat sheets that you’ll likely find useful. Take a look:

	package
	what this package is about
	site
	cheat sheet

	readxl
	data import (esp. Excel files)
	site
	cheat sheet

	dplyr
	data transformation
	site
	cheat sheet

	stringr
	working with text
	site
	cheat sheet

	factors
	categorical data
	site
	cheat sheet

Extra: Exporting data

At the start of this chapter we covered importing data - but didn’t cover exporting data. Of course, while this guide will show you how far you can take R, it also can be just one small piece of your toolchain if you wish. You could use R to do some cleaning, processing, and some analysis, and then export the data for use in another tool like a dashboard product.

The tidyverse package readr includes a set of write_ functions to export to CSV quickly. write_csv_excel() takes a data object input and a filename (e.g. mydata.csv) and builds out the file which can be read in Excel or other tools.

We briefly reviewed accessing a database earlier in this chapter. DBI provides dbWriteTable() to write a data table object as a database table. You must provide the db connection object, a table name, and then the data object you’re storing. It can take an append argument if you want to simply add data to an existing table.

	Yes, there are a couple packages that are designed for accessing IPEDS data including this one in CRAN and this one on GitHub. But we’re using the files directly from the IPEDS data center because we are focused on learning how to import and clean data.↩︎

	And included in the dictionary file or the web interface↩︎

	By default, the tidyverse read_ functions guess at column types by examining the fields, but it is imperfect.↩︎

	case_when() is inspired by the SQL CASE statement, and is more elegant than nested IF() functions you may be used to using in Excel.↩︎

3 Statistical analysis & data visualizations

3.1 Statistical analysis

R was created as a statistics-focused programming language, so it’s important to at least briefly showcase how R can be used to run statistical methods and quickly produce results that can then be visualized, used in reports, and stored for future use. However, institutional researchers come from many different backgrounds, and we don’t want to assume that all IR professionals reading this guide have the same level of knowledge of statistical methods. We’ll keep this section brief, but know that if a method exists, it likely has an implementation in R.

In this section we’ll build off of the occupational projections data that we worked with in Section 2.5, which is stored as the R data object projections_data.

3.1.1 Descriptive statistics

During data cleaning, we utilized the summary() function in conjunction with glimpse() to quickly examine a dataset. The summary() function displays basic descriptive statistics about every numeric variable in the dataset:

summary(projections_data)

 SOC Occupation Current_jobs Projected_jobs
 Length:465 Length:465 Min. : 102 Min. : 104
 Class :character Class :character 1st Qu.: 376 1st Qu.: 395
 Mode :character Mode :character Median : 841 Median : 902
 Mean : 2425 Mean : 2618
 3rd Qu.: 2296 3rd Qu.: 2583
 Max. :34936 Max. :39662

 Change_num Change_pct Growth Exits
 Min. :-1948.0 Min. :-0.35860 Min. :-195.00 Min. : 2.0
 1st Qu.: 5.0 1st Qu.: 0.01650 1st Qu.: 0.00 1st Qu.: 12.0
 Median : 44.0 Median : 0.06850 Median : 4.00 Median : 30.0
 Mean : 193.9 Mean : 0.07258 Mean : 19.39 Mean : 105.8
 3rd Qu.: 185.0 3rd Qu.: 0.12710 3rd Qu.: 18.00 3rd Qu.: 82.0
 Max. : 8608.0 Max. : 0.58880 Max. : 861.00 Max. :2775.0

 Transfers Tot_openings Wage Notes
 Min. : 1.0 Min. : 5.0 Min. : 10.04 Length:465
 1st Qu.: 21.0 1st Qu.: 36.0 1st Qu.: 18.13 Class :character
 Median : 52.0 Median : 87.0 Median : 23.60 Mode :character
 Mean : 164.6 Mean : 289.8 Mean : 5242.13
 3rd Qu.: 143.0 3rd Qu.: 231.0 3rd Qu.: 37.30
 Max. :3245.0 Max. :6071.0 Max. :129451.00
 NA's :3
 annual_wage
 Min. : 20883
 1st Qu.: 37710
 Median : 48776
 Mean : 57792
 3rd Qu.: 75712
 Max. :179150
 NA's :3

Here we can quickly identify some important information about the dataset:

	it includes 465 occupations that currently employ a range of 102 to 34,936 persons,1

	the typical occupation is projected to grow 7% over the next ten years,

	the median occupation will have 87 opening each year,2 and

	the median occupation pays $48,776.

3.1.2 Inferential statistics: linear regression

Now let’s use linear regression to build a simple model. Let’s see whether annual wages might predict the rate at which persons leave an occupation.

We’ll first need to create an additonal variable to calculate the occupational turnover rate, which we’ll use as our outcome variable.

Then we’ll use the lm function provided in base R. We’ll store the regression model as an R object, so we can work with it. We provide a description of the model in the format outcome_variable ~ predictor1 (+ predictor2 ...). We provide an optional parameter na.action = na.exclude to direct how missing values should be handled.

projections_data <- projections_data |>
 mutate(
 turnover_rate = (Exits + Transfers) / Current_jobs
)

projections_model <- lm(turnover_rate ~ annual_wage,
 data = projections_data,
 na.action = na.exclude)

summary(projections_model)

Call:
lm(formula = turnover_rate ~ annual_wage, data = projections_data,
 na.action = na.exclude)

Residuals:
 Min 1Q Median 3Q Max
-0.076254 -0.014932 -0.004293 0.010591 0.168017

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.464e-01 2.962e-03 49.44 <2e-16 ***
annual_wage -7.687e-07 4.637e-08 -16.58 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02709 on 460 degrees of freedom
 (3 observations deleted due to missingness)
Multiple R-squared: 0.374, Adjusted R-squared: 0.3726
F-statistic: 274.8 on 1 and 460 DF, p-value: < 2.2e-16

You can see that annual wages does appear to be a strong predictor of occupational turnover rate, since its coefficient is statistically significant and the model explains a considerable proportion of the variance.

Keen-eyed readers will note that wages may not be sufficiently normal to use as a variable in linear regression and likely needs a data transformation. Variables with quantity often need a log transform to be treated as sufficiently normal. We can make a quick adjustment to our code for this, without even needing a new variable:

projections_model <- lm(turnover_rate ~ log(annual_wage),
 data = projections_data,
 na.action = na.exclude)

summary(projections_model)

Call:
lm(formula = turnover_rate ~ log(annual_wage), data = projections_data,
 na.action = na.exclude)

Residuals:
 Min 1Q Median 3Q Max
-0.070564 -0.013939 -0.001799 0.011336 0.151656

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.688846 0.029031 23.73 <2e-16 ***
log(annual_wage) -0.054000 0.002669 -20.23 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02491 on 460 degrees of freedom
 (3 observations deleted due to missingness)
Multiple R-squared: 0.4708, Adjusted R-squared: 0.4697
F-statistic: 409.3 on 1 and 460 DF, p-value: < 2.2e-16

This correction seems to have improved our model considerably, as the model now explains even more of the variance in occupational turnover rate.

The residuals may be of interest,3 so let’s pull them back into our projections_data:

projections_data <- projections_data |>
 mutate(residuals = residuals(projections_model))

glimpse(projections_data)

Rows: 465
Columns: 15
$ SOC <chr> "11-1011", "11-1021", "11-1031", "11-2021", "11-2022", …
$ Occupation <chr> "Chief Executives", "General and Operations Managers", …
$ Current_jobs <dbl> 1830, 14405, 336, 1777, 2537, 376, 2900, 3250, 5457, 13…
$ Projected_jobs <dbl> 1671, 15779, 372, 1869, 2668, 413, 3152, 3353, 6422, 14…
$ Change_num <dbl> -159, 1374, 36, 92, 131, 37, 252, 103, 965, 87, 29, 228…
$ Change_pct <dbl> -0.0869, 0.0954, 0.1071, 0.0518, 0.0516, 0.0984, 0.0869…
$ Growth <dbl> -16, 137, 4, 9, 13, 4, 25, 10, 96, 9, 3, 23, 0, 8, 3, 5…
$ Exits <dbl> 48, 301, 8, 36, 52, 10, 86, 54, 122, 27, 10, 30, 3, 24,…
$ Transfers <dbl> 71, 936, 17, 115, 164, 22, 151, 188, 298, 67, 24, 86, 8…
$ Tot_openings <dbl> 103, 1374, 29, 160, 229, 36, 262, 252, 516, 103, 37, 13…
$ Wage <dbl> 80.74, 47.63, 37738.00, 62.05, 61.39, 57.62, 47.73, 63.…
$ Notes <chr> NA, NA, "**", NA, NA, "^", "^", NA, NA, NA, NA, NA, NA,…
$ annual_wage <dbl> 167939.2, 99070.4, 37738.0, 129064.0, 127691.2, 119849.…
$ turnover_rate <dbl> 0.06502732, 0.08587296, 0.07440476, 0.08497468, 0.08513…
$ residuals <dbl> 0.0258700295, 0.0182162354, -0.0453703761, 0.0315996376…

3.2 Data visualizations

R can be used to create all kinds of graphs, utilizing the ggplot2 package from tidyverse. The ggplot2 package is based on (and named after) a book, The Grammar of Graphics (Wilkinson 2012). This is arguably one of the most complex packages, so you’ll want to have the site and cheat sheet available for review while you’re learning it.

In this section we’ll work with the IPEDS data we cleaned in Chapter 2.

3.2.1 Visualization #1

For our first visualization, we’ll keep the data simple. We just want to create a bar chart summarizing the number of postsecondary institutions in Ohio by sector.

We first need to aggregate the data a bit. We’ll use summarize() and group_by(). These functions act like steps in a Excel pivot table, with group_by() selecting which variables should be grouped in rows, and summarize() taking aggregations like mean() to calculate values.

sector_counts <- combined |>
 group_by(SECTOR) |>
 summarize(
 unique_inst = n_distinct(UNITID.x)
)

A plot in ggplot2 includes three basic parts: the dataset you’re using, the a definition of the coordinate system and aesthetics, and the geometry (shapes) that you want to display. We use + to add on the geometry layer (and any further optional layers).

sector_counts |> # start with the summarized data
 # use an x,y coordinate system with SECTOR and unique_inst
 ggplot(aes(x = SECTOR, y = unique_inst)) +
 # apply bar shapes by using values in the data
 geom_col()

This isn’t very pretty, but we can make some adjustments. First, we should consider the order of our chart, which we can rearrange using reorder() and providing a field and order (- for descending):

sector_counts |> # start with the summarized data
 # use an x,y coordinate system with SECTOR and unique_inst
 ggplot(aes(x = reorder(SECTOR, -unique_inst), y = unique_inst)) +
 # apply bar shapes by using values in the data
 geom_col()

Now let’s start to label it. We would like both data labels and axes labels, as well as a title:

sector_counts |> # start with the summarized data
 # use an x,y coordinate system with SECTOR and unique_inst
 ggplot(aes(x = reorder(SECTOR, -unique_inst), y = unique_inst)) +
 # apply bar shapes by using values in the data
 geom_col() +
 # add data labels
 geom_text(aes(label = unique_inst), vjust = -0.5, size = 3) +
 # label axes and provide title
 labs(
 title = "Distribution of Ohio Institutions by Sector",
 x = "Sector",
 y = "Number of institutions"
)

Now let’s pretty it up. We need to adjust the x axis labels, and change up the colors. We can change the bar color with an optional fill parameter to geom_col(), and adjust the labels and background with a theme layer:

sector_counts |> # start with the summarized data
 # use an x,y coordinate system with SECTOR and unique_inst
 ggplot(aes(x = reorder(SECTOR, -unique_inst), y = unique_inst)) +
 # apply bar shapes by using values in the data, use blue color
 geom_col(fill = "blue") +
 # add data labels
 geom_text(aes(label = unique_inst), vjust = -0.5, size = 3) +
 # label axes and provide title
 labs(
 title = "Distribution of Ohio Institutions by Sector",
 x = "Sector",
 y = "Number of institutions"
) +
 theme(
 axis.text.x = element_text(angle = 40, hjust = 1, size = 6),
 panel.background = element_blank()
)

That’s much nicer! Let’s make a few more adjustments. We can specify a particular shade of blue with an exact hex code. Columbus State Community College uses a blue of R:0 G:114 B:152, which is a hex code of #007298. Then we’ll add a caption (in the labels layer labs()), a box around the chart (a new geom_rect() layer), and add additional theme() options:

sector_counts |> # start with the summarized data
 # use an x,y coordinate system with SECTOR and unique_inst
 ggplot(aes(x = reorder(SECTOR, -unique_inst), y = unique_inst)) +
 # apply bar shapes by using values in the data, use blue color
 geom_col(fill = "#007298", color = "black") +
 # add data labels
 geom_text(aes(label = unique_inst), vjust = -0.5, size = 3) +
 # label axes and provide title
 labs(
 title = "Distribution of Ohio Institutions by Sector",
 x = "Sector",
 y = "Number of institutions",
 # new caption
 caption = "Data Source: IPEDS Data Center"
) +
 theme(
 axis.text.x = element_text(angle = 40, hjust = 1, size = 6),
 panel.background = element_blank(),
 axis.title.x = element_text(margin = margin(t = 10), color = "black"),
 axis.title.y = element_text(margin = margin(t = 10), color = "black"),
 axis.text = element_text(color = "black")
) +
 # add box around chart
 geom_rect(
 aes(xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf),
 color = "black",
 fill = NA,
 alpha = 0
)

3.2.2 Visualization #2

Next, we’ll illustrate how to create a different style of chart that may be helpful with more complex data. We’ll continue to use the IPEDS dataset, but now we’ll work with the completions data.

First we’ll again want to summarize the data. Let’s get the sum of awards (CTOTALT) by CIPCODE within SECTOR, focusing only on the public sector. We also need to make a slight adjustment to CIPCODE since there is a total code (99).

sector_awards <- combined |>
 filter(
 CIPCODE != 99, # remove special code for totals at award level
 str_sub(SECTOR, 1, 6) == "Public" # focus only on public sector for now
) |>
 group_by(SECTOR, CIPCODE) |>
 summarize(TotalAwards = sum(CTOTALT))

Since there are a lot of CIP codes, we likely want to take a look at the top CIP codes by number of awards. We’ll use slice_max() to pick the top 5 CIP codes:

top_awards <- sector_awards |>
 slice_max(order_by = TotalAwards, n = 5)

top_awards

A tibble: 15 × 3
Groups: SECTOR [3]
 SECTOR CIPCODE TotalAwards
 <fct> <chr> <dbl>
 1 Public 4-year or above 51.3801 5998
 2 Public 4-year or above 52.0411 4565
 3 Public 4-year or above 52.0201 3798
 4 Public 4-year or above 24.0199 2947
 5 Public 4-year or above 24.0101 2496
 6 Public 2-year 24.0101 3422
 7 Public 2-year 52.0201 3237
 8 Public 2-year 43.0107 1441
 9 Public 2-year 51.3801 1249
10 Public 2-year 24.0102 1231
11 Public less-than-2-year 51.3901 858
12 Public less-than-2-year 51.3902 775
13 Public less-than-2-year 51.0904 512
14 Public less-than-2-year 43.0203 402
15 Public less-than-2-year 49.0205 402

Now we’ll create a more complex visual, still using the bar chart. We’ll work off of the top_awards we just created. We’ll start with the bar chart mostly as before in Visualization #1, with the exception of allowing the bars to be colored differently by sector.

Next we’ll add data labels to the bars, much like in Visualization #1.

Then we’ll add a new feature: facet. By adding a facet_wrap layer, we’ll actually create a multiple plot arrangement. Since total numbers of awards may vary considerably between the sectors, we’ll let the y-axes be independent.

Following, we’ll label teh plot with a title and axes labels.

We’ll use a theme layer again to modify the look, including applying a classic theme this time. We’ll also specify a custom color pallette.

top_awards |>
 ggplot(aes(x = TotalAwards, y = reorder(CIPCODE, -TotalAwards))) +
 # apply bar geometry but allow colors to vary by sector
 geom_col(aes(fill = SECTOR)) +
 # add data labels
 geom_text(aes(label = TotalAwards), hjust = -0.25, size = 3, color = "black") +
 # add facet layer
 facet_wrap(
 ~SECTOR,
 scales = "free_y"
) +
 # axes labes and title
 labs(
 title = "Top 5 CIP codes by awards conferred, public institutions",
 x = "Awards conferred",
 y = "CIP code",
 caption = "Data Source: IPEDS Data Center"
) +
 # apply theming
 theme_classic() +
 theme(
 axis.text = element_text(size = 8, color = "black"),
 legend.position = "none"
) +
 # apply color palette
 scale_fill_manual(values = c("#003E52", "#99DAEA", "#646569"))

Now you have a taste of the complexity that you can add with ggplot2!

Exercises

3.2.3 Exercise 1

Describe how you would quickly examine and summarize a dataset.

Code
examine a dataset: glimpse()
summary descriptive statistics: summary()

3.2.4 Exercise 2

Open the ggplot2 cheat sheet. Take a look in particular at the “Geoms” section. What tipes of graphs do you think will be most useful in your work?

Extra: logistic regression

In institutional research working with student data, we often create binary variables like retention, persistence, transfer, and graduation. To work with binary outcome variables like these, we need to use methods designed for working with binary outcome variables, like logistic regression.

Luckily, R provides a package, glm, for generalized linear models like logistic regression. glm includes a parameter family, for which providing family = "binomial" will provide for logistic regression.4

Extra: propensity score matching

Another increasingly important technique for the IR toolbox is propensity score matching, which can be used to create comparison groups for impact evaluation, taking into account factors that may be associated with the likelihood of participating in a program. The MatchIt package provides the functions to carry out this approach, as well as vignettes that provide a good summary (Ho et al. 2023).

	Though the summary occupation lines likely cover persons in all occupations, it seems an occupation has to have 100 or more workers to be included at a detail level in these reports.↩︎

	from growth ~4/yr, exits ~30/yr, and transfers ~52/yr. Exits are people in the occupation leaving the labor force (mainly retirements), while transfers are people moving into a different occupation.↩︎

	So that we can use them in Chapter 4!↩︎

	By default, this uses the logit link function, but using family = binomial(link = "probit") will change it to probit regression, etc.↩︎

4 Building parameterized reports

In the previous sections of the guide, you’ve learned how to start using R, how to import and clean data, and how to analyze and visualize data. You’ve written R scripts and generated outputs, that you can of course use to build a report using whatever software you would like.

This section, however, will introduce you to an open source publishing system that works with R to easily create reports using R code in a variety of formats.

4.1 Installing Quarto

Quarto is built-in to R Studio, so there’s likely nothing extra that you have to do. For Visual Studio Code, you’ll need to install the Quarto extension and Quarto itself from https://quarto.org/docs/get-started/. When you begin a Quarto project that includes .pdf output, you’ll be prompted to install TinyTex by using the OS Terminal command quarto install tinytex.

Using Quarto will require the R packages rmarkdown and knitr.

4.2 Creating a Quarto document

Quarto documents use the .qmd extension, since Quarto makes extensive use of the markdown syntax. Markdown is a relatively simple coding scheme that is designed to be both human- and machine-readable.

Tip

Markdown is used extensively across the modern web, including at Reddit and Discord. GitHub, which we’ll discuss in Chapter 5, uses Markdown for its README.md files to allow developers to share info about their projects in a visually appealing manner.

You can create a Quarto document simply by creating a new file with the extension .qmd. However, both R Studio and Visual Studio Code include menus to utilize templates that give you a great place to start. Go ahead and start a new Quarto project.

4.2.1 Quarto document header

The first section of a Quarto document is the header. The header is comprised of a special series of tags that define how the document should be rendered, in a format called YAML1. A very simple such example is to simply define the document’s title:

title: "New Quarto Project"

The Quarto authoring tutorial introduces you to additional options that you can define in the YAML header.

4.2.2 Basic markdown

Next, we can begin to write out the explanatory text in our document. It is of course helpful to break our document into sections. It is simple to arrange cascading sections by using the # symbol. Using two such symbols consecutively, ##, defines a top-level section header, while additional ones (###, ####) define additional levels.

Within regular text you can add links in different ways:

	<https://oairp.org/> renders as https://oairp.org

	[the OAIRP website](https://oairp.org/) renders as the OAIRP website

As well as emphasize text:

	italics renders as italics

	bold renders as bold

We can use *, +, or - to create lists – they just have to have a blank line between the list and any text above.

The Quarto documentation has a great overview of the basics of Markdown.

Let’s use some of these to continue to build out our .qmd file by adding the following after the header:

title: "New Quarto Project"

Quarto

Quarto is a fantastic way to get started writing reports
without spending **a ton of time** messing with things like:

* font sizes
* styles
* spacing

Quarto has excellent documentation at <https://quarto.org>.

4.2.3 Code blocks

Finally, we’ll get back to using R code to run some simple calculations and include the result. We do this by adding a code block. A code block opens and closes with the ``` sequence. Using curly brackets after the code block opening sequence ({}), we define the language that the code block is running: for R, this is {R}.2 Inside, we’ll include the code that will produce the output we’d like to show:

title: "New Quarto Project"

Quarto

Quarto is a fantastic way to get started writing reports
without spending **a ton of time** messing with things like:

* font sizes
* styles
* spacing

Quarto has excellent documentation at <https://quarto.org>.

```{R}
calc <- 1 + 1
print(calc)
```


Test this code yourself. You should see it render like it does in Appendix A.

Note

By default, the code block prints both the code and the result. We can add special execution options at the start of the code block to define how it should be processed. Those options start with a special preface #|. Adding the echo: false execution option will suppress the code and only show the output:

```{R}
#| echo: false
calc <- 1 + 1
print(calc)
```


You can review additional Execution Options in the Quarto guide.

4.3 In Practice: A full report build

Now let’s build a full report, working with the data we’ve cleaned and analyzed in Section 2.4 and Chapter 3, projections_data. If we pull the code together, we should have:

```{R}
# load libraries
library("readxl")
library("curl")
library("tidyverse")

# define file url
projections_url <- "https://ohiolmi.com/_docs/PROJ/JobsOhio/Central.xlsx"

# download file
curl_download(projections_url, "projectionsdata.xlsx")

# read file with approrpiate settings
projections_data <- read_xlsx(
    "projectionsdata.xlsx",
    skip = 6,
    col_names = c(
        "SOC",
        "Occupation",
        "Current_jobs",
        "Projected_jobs",
        "Change_num",
        "Change_pct",
        "Growth",
        "Exits",
        "Transfers",
        "Tot_openings",
        "Wage",
        "Notes"
    ),
    col_types = c(
        "text",
        "text",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "text"
    )
    ) |>

    # remove summary occupations and notes/blank rows
    filter(
        str_sub(SOC, -4, -1) != "0000",
        str_length(SOC) == 7
        ) |>
        
    # create annual wage column so values are consistent
    mutate(
        annual_wage = case_when(
            Wage < 200 ~ Wage * 2080,
            .default = Wage
        )
    ) |>

    # create turnover rate variable
    mutate(
        turnover_rate = (Exits + Transfers) / Current_jobs
        )
    
# run linear regression model to predict turnover rate using annual wage
projections_model <- lm(turnover_rate ~ log(annual_wage), 
                            data = projections_data,
                            na.action = na.exclude)

# add the residuals back to projections_data
projections_data <- projections_data |>
    mutate(residuals = residuals(projections_model))
```


4.3.1 Starting a new report

Now we’re going to start a new Quarto file (.qmd). We’ll start with the header but add a title that describes our report, then add a short introduction to the report describing the data source we’re using, and then add the code from above with the execution option include: false so that it is only used to prepare the R objects we’ll use.

title: "Report: The largest, fastest-growing, and lowest-turnover occupations in Central Ohio"

Source: ODJFS Bureau of Labor Market Information, Long-Term Occupational Projections
for the Central Ohio JobsOhio region, 2020-2030.
<https://ohiolmi.com/Home/Projections/ProjectionsHome_08.16.23>

```{R}
#| include: false
# load libraries
library("readxl")
library("curl")
library("tidyverse")

# define file url
projections_url <- "https://ohiolmi.com/_docs/PROJ/JobsOhio/Central.xlsx"

# download file
curl_download(projections_url, "projectionsdata.xlsx")

# read file with approrpiate settings
projections_data <- read_xlsx(
    "projectionsdata.xlsx",
    skip = 6,
    col_names = c(
        "SOC",
        "Occupation",
        "Current_jobs",
        "Projected_jobs",
        "Change_num",
        "Change_pct",
        "Growth",
        "Exits",
        "Transfers",
        "Tot_openings",
        "Wage",
        "Notes"
    ),
    col_types = c(
        "text",
        "text",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "text"
    )
    ) |>

    # remove summary occupations and notes/blank rows
    filter(
        str_sub(SOC, -4, -1) != "0000",
        str_length(SOC) == 7
        ) |>
        
    # create annual wage column so values are consistent
    mutate(
        annual_wage = case_when(
            Wage < 200 ~ Wage * 2080,
            .default = Wage
        )
    ) |>

    # create turnover rate variable
    mutate(
        turnover_rate = (Exits + Transfers) / Current_jobs
        )
    
# run linear regression model to predict turnover rate using annual wage
projections_model <- lm(turnover_rate ~ log(annual_wage), 
                            data = projections_data,
                            na.action = na.exclude)

# add the residuals back to projections_data
projections_data <- projections_data |>
    mutate(residuals = residuals(projections_model))
```


4.3.2 Adding content

Now we’ll need to call upon a few libraries that we’ll use to prepare data tables for a report. We’ll need knitr to use code to build tables for the report and scales to format raw numbers appropriately.3

Though we’re using only data tables for this report, you can build a report with graphs like those you built in Chapter 3 in much the same way. See the Quarto guide for more details.

We’ll use the label_ functions from scales to create new display variables we’ll use in our printed tables. Those label_ functions work similarly to Microsoft Excel’s TEXT() functions. We’ll include the include: false option again since we don’t need this code or any output in our report, just to continue to build out the R data objects we’re using.

```{R}
#| include: false
library("knitr")
library("scales")
projections_data <- projections_data |>
    mutate(
        Current_jobs_displ = label_number(big.mark = ",")(Current_jobs),
        Change_pct_displ = label_percent(accuracy = .1)(Change_pct),
        Tot_openings_displ = label_number(big.mark = ",")(Tot_openings),
        annual_wage_displ = label_dollar()(annual_wage),
        turnover_rate_displ = label_percent(accuracy = .1)(turnover_rate)
    )

```


Let’s build out our first section. We’ll make a summary table of the 15 largest occupations, displaying the occupation name, code, current number of jobs, 10-yr change, annual openings, median earnings, and turnover rate.

We’ll start with a section header name (preceded by ##). Next we’ll open a code block, and specify the echo: false execution option so that only the result appears in the report, not the code.

Then we’ll use slice_max() to pull the 15 largest occupations (by passing the Current_jobs variable and an n = 15 parameter). We’ll sort (arrange) those occupations in decending order using arrange() but using - ahead of the variable name to indicate the sort should be descending, then use select() to keep only those variables used in the report. If we were using Pivot Tables in Microsoft Excel, these steps would be equivalent to filtering and sorting on row values.

Finally, we’ll call the kable function from the knitr package to build a nice table designed to be read by humans. Within that function we’ll specify how the columns will align (using align =) and give proper column headings (using col.names =).

Largest 15 occupations

```{R}
#| echo: false
projections_data |>
    slice_max(Current_jobs, n = 15) |>
    arrange(-Current_jobs) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```


We’re only modifying projections_data temporarily, not storing the result back as projections_data. This allows us to build additional similar tables quickly.

For the fastest-growing and lowest-turnover, we’ll focus on modifying the slice_ and arrange lines of code:

15 fastest-growing occupations

```{R}
#| echo: false
projections_data |>
    slice_max(Change_pct, n = 15) |>
    arrange(-Change_pct) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```

15 occupations with the lowest turnover rates

```{R}
#| echo: false
projections_data |>
    slice_min(turnover_rate, n = 15) |>
    arrange(turnover_rate) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```


Lastly, we’ll make use of the analysis we ran in Chapter 3. We’ll generate a table with the lowest turnover rates relative to median earnings by using the residuals that we received from our regression model.

15 occupations with the lowest turnover rates relative to median earnings

```{R}
#| echo: false
projections_data |>
    slice_min(residuals, n = 15) |>
    arrange(residuals) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```


4.3.3 Full render

Run the report. You should see it render and pull together the four tables we worked on above. Check your work against Appendix B

4.4 Parameterizing your report

Let’s prepare the report to run with different options by modifying just a few sections of the code.

The key here is to use Quarto’s powerful parameters capability. We can set parameters in the Quarto document header, and then reference them in our R code blocks.

In the Quarto document header, we’ll add the params: option, followed by parameter names and values:

title: "Report: The largest, fastest-growing, and lowest-turnover occupations in our region"
params:
 region: Southeast
 top_n: 10

We’ll then change pieces of our code to call those parameters. We call them by using params$region and params$top_n.4

Outside of our code blocks, like in headers and regular text we can call the parameters using special inline code:`r params$value`.5

We’ll need to:

	Change the reference to the region in the “Source:” paragraph;

	Modify the projections_url line using str_c so that we include the region;

	Change the 15 in every header; and

	Change the 15 in the slice_ functions in each code block.

If successful, we’ll be able to run the report for a specified region (that matches the ODJFS projections URL) and a specified limit for the number of occupations returned for the tables. We’ll change from Central Ohio to Southeast Ohio and from 15 occupations to 10 occupations to test our code.

title: "Report: The largest, fastest-growing, and lowest-turnover occupations in our region"
params:
 region: Southeast
 top_n: 10

Source: ODJFS Bureau of Labor Market Information,
Long-Term Occupational Projections for the `r params$region` Ohio JobsOhio region, 2020-2030.
<https://ohiolmi.com/Home/Projections/ProjectionsHome_08.16.23>

```{R}
#| include: false
# load libraries
library("readxl")
library("curl")
library("tidyverse")

# define file url
projections_url <- str_c(
                    "https://ohiolmi.com/_docs/PROJ/JobsOhio/",
                    params$region,
                    ".xlsx"
)

# download file
curl_download(projections_url, "projectionsdata2.xlsx")

# read file with approrpiate settings
projections_data <- read_xlsx(
    "projectionsdata2.xlsx",
    skip = 6,
    col_names = c(
        "SOC",
        "Occupation",
        "Current_jobs",
        "Projected_jobs",
        "Change_num",
        "Change_pct",
        "Growth",
        "Exits",
        "Transfers",
        "Tot_openings",
        "Wage",
        "Notes"
    ),
    col_types = c(
        "text",
        "text",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "numeric",
        "text"
    )
    ) |>

    # remove summary occupations and notes/blank rows
    filter(
        str_sub(SOC, -4, -1) != "0000",
        str_length(SOC) == 7
        ) |>
        
    # create annual wage column so values are consistent
    mutate(
        annual_wage = case_when(
            Wage < 200 ~ Wage * 2080,
            .default = Wage
        )
    ) 
    
```

```{R}
#| include: false
projections_data <- projections_data |>
    mutate(
        turnover_rate = (Exits + Transfers) / Current_jobs
        )

projections_model <- lm(turnover_rate ~ log(annual_wage), 
                            data = projections_data,
                            na.action = na.exclude)

projections_data <- projections_data |>
    mutate(residuals = residuals(projections_model))
```

```{R}
#| include: false
library("knitr")
library("scales")
projections_data <- projections_data |>
    mutate(
        Current_jobs_displ = label_number(big.mark = ",")(Current_jobs),
        Change_pct_displ = label_percent(accuracy = .1)(Change_pct),
        Tot_openings_displ = label_number(big.mark = ",")(Tot_openings),
        annual_wage_displ = label_dollar()(annual_wage),
        turnover_rate_displ = label_percent(accuracy = .1)(turnover_rate)
    )

```


Largest `r params$top_n` occupations

```{R}
#| echo: false
projections_data |>
    slice_max(Current_jobs, n = params$top_n) |>
    arrange(-Current_jobs) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```

`r params$top_n` fastest-growing occupations

```{R}
#| echo: false
projections_data |>
    slice_max(Change_pct, n = params$top_n) |>
    arrange(-Change_pct) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```

`r params$top_n` occupations with the lowest turnover rates

```{R}
#| echo: false
projections_data |>
    slice_min(turnover_rate, n = params$top_n) |>
    arrange(turnover_rate) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```

`r params$top_n` occupations with the lowest turnover rates relative to median earnings

```{R}
#| echo: false
projections_data |>
    slice_min(residuals, n = params$top_n) |>
    arrange(residuals) |>
    select(
        Occupation, SOC, Current_jobs_displ, Change_pct_displ,
        Tot_openings_displ, annual_wage_displ, turnover_rate_displ
    ) |>
    kable(
        col.names = c(
            "Occupation", "SOC", "Current jobs", "10-yr change",
            "Annual openings", "Median earnings", "Turnover rate"
        ),
        align = c("l","l","r","r","r","r","r")
        )
```


Once again, you can check your code against Appendix C.

Exercises

4.4.1 Exercise 1

Practice using markdown. How would you:

	Emphasize text?

	Create a link with custom text?

	Add an image?

	Create a numbered list?

Take a look at the RStudio cheat sheet for Quarto and the cheet sheet for rmarkdown, specifically the section to the far right titled “Write with Markdown.”6

4.4.2 Exercise 2

Branstorm a few different ways you might use parameters to create a series of reports that utilize much of the same code.

Extra: Other Quarto document types

Though you may be most interested in creating a report or article, Quarto is capable of generating other document types, including powerpoints, websites, and ebooks.

Those types do get a bit more complicated, but rely on many of the basics you’ve learned in this section as building blocks. The [Quarto guide] details these possibilities.

This guide itself is written as a Quarto ebook, as are other resources like R for Data Science (Wickham, Çetinkaya-Rundel, and Grolemund 2023). If interested in seeing examples of quarto projects in action, you can browse their code on GitHub, which we’ll learn in Chapter 5.

	YAML stands for Yet Another Markup Language, but don’t worry - there’s not actually much to learn↩︎

	Quarto also works with other languages, including Python and Julia↩︎

	scales is actually used by ggplot2, but we’ll load it just in case.↩︎

	params is an R data object being passed by Quarto, and $ tells R to pull out specific variables (columns) from that object.↩︎

	Inline code can also be used to call summary figures in your text paragraphs. We did this for the guide in Chapter 3 in the section about summary().↩︎

	Quarto is an evolution of rmarkdown, adding additional functionality and programming languages.↩︎

5 Collaborating on code

Through Chapter 4 you’ve developed a report using R code that incorporates your data analysis. Though some IR projects are solo efforts, in many cases we want to collaborate with other institutional researchers, either now or in the future.1

In this section we’ll discuss how you can set up your project in a way that makes it easy to collaborate, borrowing practices from software development.

We’ll begin by creating an account at GitHub, an online package repository and collaboration tool using Git, a version control system that we’ll install.

5.1 Setting up GitHub

GitHub is a developer platform to host code and provide for collaboration. Now owned by Microsoft, it has added numerous complex features that can help in software development. As professionals focused on data analytics, we’ll just focus on the core code-hosting and collaboration tools for now.

Head to https://github.com/ and create a new account if you do not already have one.

Note

There’s no need to have multiple accounts like one for work and one for personal. In fact, GitHub recommends having just one account. You can add multiple email addresses to your GitHub account, and your GitHub account can be a member of an organization that hosts repositories.

Once you have your GitHub account, you’ll be able to connect it with Git when we install it in Section 5.3.

5.2 An overview of GitHub

When you log into GitHub, you’ll be presented with a dashboard that may be fairly empty. You can reach your profile by clicking on the icon in the top right. It will look similar to:

[image: A screenshot of a GitHub personal profile page.]

A GitHub profile overview. In the center is a summary of recent contributions of code. To the left is a set of personal info that you can add in settings, plus a list of organizations that you are a member of on GitHub. At the top, you can see a menu that begins with Overview.

A GitHub organization is a special type of GitHub account that can host code projects. Personal GitHub accounts can be added as members of the organization. Organizations can have multiple teams within the organization - you should check with others at your institution before creating one.

We’ve created a GitHub Organization for the Ohio Association for Institutional Research and Planning: https://github.com/oairp. If you click on it, you should see the following:

[image: A screenshot of a GitHub organization page.]

The OAIRP GitHub Organization page. It shows as hosting two repositories, or code projects: one special repository (.github) that holds the summary README.md file displayed and one for this guide. You can also see that the authors of this guide are members of the organization.

At this point, you’ve noticed that both the personal account profile page and the organizational profile page have top navigation bars that begin with Overview and Repositories. Repositories, or repos for short, are essentially code projects.2 Go ahead and click into the PoweringIRwithR repo:

[image: A screenshot of a GitHub repo.]

Here you can see the source code for this guide, and an overview of the most recent changes to the various files. You will also notice that the repo has one branch (main), two collaborators (the authors), and a deployment to GitHub Pages. The buttons towards the top allow you to follow the project in different ways and even make a copy of the project for yourself.

5.3 Setting up Git

Git is a free, open-source version control system. When enabled, it keeps track of changes you make to your code, and is small and fast so you won’t notice it’s enabled. Install Git at https://git-scm.com/ - click on Downloads then your operating system. Accept the defaults, particularly to use the main branch as the default branch and to enable Git Credential Manager, which will enable you to connect with GitHub.

There is one thing you’ll need to do to make Git operational after you install - you’ll have to let it know who you are. This is so it can track who is making the file changes to your projects that you are working on. Run the following code in your OS terminal, but be sure to replace you@example.com and Your Name with your own information.

Terminal

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

Though Git can be used locally, a lot of the power of using Git is in connecting with an online repository and collaborative version control system like GitHub.

Note

You’ll want to associate the email address you use in Git with your GitHub account, so that your edits can be properly associated with your account.

5.4 Syncing a project with GitHub

To use GitHub with your project, you’ll need to create a repository (repo) in GitHub and then begin working with it on your local computer.

From your GitHub dashboard, you can click the + button in the top right, then click “New Repository”. Alternatively, from your profile, click “Repositories”, then click “New”.

You’ll be presented with as screen with a few options:

The GitHub “Create a new repository” screen.

	Who should be the owner of the repository, you or an organization you belong to? (You can change this later)

	What to name the repository? (You can change this later, but may not want to.)

	A description that will be presented on the repository screen

	Whether the repository should be public or private

	If you’d like to add any of three special files, which you can add later but may be helpful to begin with:

	A README.md file, which displays details about your project on the repo page,

	A .gitignore file to exclude common temporary files from Git and the sync with GitHub, with R as one of the template options, and

	A license, which controls how your code can be used. Not needed for a private repo, but you might want to consider using one for a public repo.

Once you’ve created it, you’ll be taken to its page. Copy the URL for this page.

Return to R Studio or Visual Studio Code.

	If you’re starting a new project from scratch:

	In R Studio, when you click “New Project” you will select Version Control > Git > Clone Git Repository. Provide the URL and the file location and name of the folder you’d like to create on your computer for your project.

	In Visual Studio Code, you should see the option to Clone Git Repository right on the Welcome page. If logged into GitHub in Visual Studio Code, you’ll be able to navigate to your repository.

	If you’re using an existing project:

	In R Studio, click Tools > Version Control > Project Setup. Select Git. R Studio will reload your project. In the top right pane, you’ll now see Git as a tab. Click it, then find “New Branch”. In there you’ll be able to select “Add remote” and enter your repository URL.

	In Visual Studio Code, click Source Control on the left pane, then the three dots (...), then Remote > Add Remote.

5.5 The basics of Git operations

When you make changes to your code that you’d like to save with version control, you’ll stage them with a short message describing your change. This is called a commit. Both R Studio and Visual Studio Code will visually indicate which files have changed since the last commits to those files, and you can peek into exactly what lines of code are changing and how. Because this complete history of changes is stored, you can revert to older versions of code if you ever need to.

When you’re ready to sync with GitHub, you’ll first pull any changes to the repository, then push your changes. This combined action is called a sync.

How often should you sync? As often as you’d like, but particularly when you’ve completed something that works. When building this guide, for example, we synced when we completed particular paragraphs and code blocks.

Warning

The .gitignore file is used to exclude particular files from the Git (version control) operations and the sync with GitHub. We usually want to ignore any temporary files and any large files that could slow down syncs and eat up space online, particularly when they are not needed.

Because we’re working with data, we often have larger data files in our project folder, like we did with the IPEDS and occupational projections data. Since our code begins a download of those datasets, we don’t need to be including these files in the sync.

The .gitignore template described above handles common data used by R Studio, but you may find that you need to add lines to the .gitignore to ignore any Excel and compressed data files by using *.zip and *.xlsx.

Note

There are additional Git concepts that may be helpful if you are working in a larger team:

	merge conflict

	
an issue that occurs when multiple changes are being made to the same line(s) of code. Push/sync will return an error until resolved, typically by making changes to the file that is blocked by the merge conflict.

	branch

	
an additional copy of the code that can be used when a developer or team of developers are working on a set of features in development. This ensures that the main copy is not affected during the development.

	merge branch

	
the process of merging new features created by a separate branch back to the main branch.

The details of these are beyond the scope of this guide, but it’s helpful to know about them so you know when you may want to learn more. One resource is the Git & GitHub RStudio cheat sheet.

Exercises

5.5.1 Exercise 1

Log into GitHub and navigate to the PoweringIRwithR repository. Star it!

5.5.2 Exercise 2

Search "institutional research" on GitHub. Find something intersting!

Extra: About GitHub Pages

GitHub Pages is a website hosting service for GitHub accounts and public projects.

You can use Quarto to generate the files needed for a website or ebook, publish them to GitHub, set up GitHub pages, and then view your project site live on the web!

Account sites are in the format username.github.io while projects are hosted as username.github.io/reponame.

This guide was created as an ebook in Quarto and is hosted by GitHub & GitHub Pages. Since this guide is the PoweringIRwithR repo hosted by the OAIRP organization, the URL is https://oairp.github.io/PoweringIRwithR.

	In our experience, most solo IR practitioners wish to be part of a team one day!↩︎

	Not to be confused with what is labeled in GitHub as Projects, which is a project management tool to assist with tracking tasks associated with larger code projects↩︎

References

Ho, Daniel, Kosuke Imai, Gary King, Elizabeth Stuart, Alex Whitworth, and Noah Greifer. 2023. “MatchIt: Nonparametric Preprocessing for Parametric Causal Inference.” https://cran.r-project.org/web/packages/MatchIt/index.html.

R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software 59 (10): 1–23. https://doi.org/10.18637/jss.v059.i10.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.

Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023. R for Data Science. "O’Reilly Media, Inc.". https://r4ds.hadley.nz/.

Wilkinson, Leland. 2012. The Grammar of Graphics. Springer.

Appendix A — New Quarto Project

Quarto

Quarto is a fantastic way to get started writing reports without spending a ton of time messing with things like:

	font sizes

	styles

	spacing

Quarto has excellent documentation at https://quarto.org.

calc <- 1 + 1
print(calc)

[1] 2

Appendix B — Report: The largest, fastest-growing, and lowest-turnover occupations in Central Ohio

Source: ODJFS Bureau of Labor Market Information, Long-Term Occupational Projections for the Central Ohio JobsOhio region, 2020-2030. https://ohiolmi.com/Home/Projections/ProjectionsHome_08.16.23

Largest 15 occupations

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Laborers and Freight, Stock, and Material Movers, Hand
	53-7062
	34,936
	13.5%
	5,350
	$37,066
	14.0%

	Customer Service Representatives
	43-4051
	33,376
	-1.3%
	4,120
	$37,440
	12.5%

	Retail Salespersons
	41-2031
	27,404
	-1.3%
	3,733
	$27,893
	13.8%

	Fast Food and Counter Workers
	35-3023
	27,269
	9.9%
	6,071
	$22,422
	21.3%

	Registered Nurses
	29-1141
	26,388
	14.8%
	1,859
	$75,046
	5.6%

	Stockers and Order Fillers
	53-7065
	24,654
	8.5%
	4,180
	$36,067
	16.1%

	Home Health and Personal Care Aides
	31-1120
	23,796
	36.2%
	4,251
	$24,003
	14.2%

	Office Clerks, General
	43-9061
	19,984
	-0.6%
	2,257
	$37,710
	11.4%

	Software Developers and Software Quality Assurance Analysts and Testers
	15-1256
	18,223
	9.9%
	1,562
	$102,939
	7.6%

	Project Management Specialists and Business Operations Specialists, All Other
	13-1198
	17,598
	4.0%
	1,366
	$74,672
	7.4%

	Cashiers
	41-2011
	17,377
	-11.2%
	2,770
	$22,963
	17.1%

	Janitors and Cleaners, Except Maids and Housekeeping Cleaners
	37-2011
	17,091
	4.2%
	2,383
	$29,432
	13.5%

	Miscellaneous Assemblers and Fabricators
	51-2090
	16,599
	-0.9%
	1,793
	$36,982
	10.9%

	Waiters and Waitresses
	35-3031
	15,688
	14.5%
	3,474
	$20,883
	20.7%

	Heavy and Tractor-Trailer Truck Drivers
	53-3032
	15,020
	11.4%
	1,899
	$48,693
	11.5%

15 fastest-growing occupations

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Ushers, Lobby Attendants, and Ticket Takers
	39-3031
	608
	58.9%
	216
	$23,920
	29.6%

	Nurse Practitioners
	29-1171
	1,771
	53.4%
	212
	$103,230
	6.6%

	Nonfarm Animal Caretakers
	39-2021
	1,619
	41.2%
	354
	$23,067
	17.7%

	Cooks, Restaurant
	35-2014
	6,119
	41.0%
	1,316
	$29,307
	17.4%

	Occupational Therapy Assistants
	31-2011
	500
	40.8%
	94
	$62,358
	14.8%

	Fitness Trainers and Aerobics Instructors
	39-9031
	2,137
	40.0%
	479
	$31,907
	18.4%

	Medical and Health Services Managers
	11-9111
	3,463
	37.8%
	443
	$99,341
	9.0%

	Home Health and Personal Care Aides
	31-1120
	23,796
	36.2%
	4,251
	$24,003
	14.2%

	Preschool Teachers, Except Special Education
	25-2011
	3,789
	36.1%
	581
	$29,037
	11.7%

	Interpreters and Translators
	27-3091
	2,124
	34.7%
	307
	$38,979
	11.0%

	Physician Assistants
	29-1071
	706
	34.0%
	70
	$102,482
	6.5%

	Speech-Language Pathologists
	29-1127
	1,257
	33.6%
	129
	$79,269
	6.9%

	Physical Therapist Assistants
	31-2021
	985
	33.3%
	169
	$62,566
	13.8%

	Epidemiologists
	19-1041
	177
	32.8%
	21
	$77,750
	8.5%

	Logisticians
	13-1081
	1,767
	30.4%
	229
	$77,459
	9.9%

15 occupations with the lowest turnover rates

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Chiropractors
	29-1011
	387
	15.5%
	15
	$61,027
	2.3%

	Obstetricians and Gynecologists
	29-1218
	210
	0.0%
	5
	$169,666
	2.4%

	Surgeons, Except Ophthalmologists
	29-1248
	396
	1.0%
	10
	NA
	2.5%

	Anesthesiologists
	29-1211
	363
	5.0%
	12
	NA
	2.8%

	General Internal Medicine Physicians
	29-1216
	506
	3.0%
	16
	$177,050
	2.8%

	Psychiatrists
	29-1223
	108
	18.5%
	5
	NA
	2.8%

	Dentists, General
	29-1021
	741
	12.2%
	30
	$167,814
	2.8%

	Physicians, All Other; and Ophthalmologists, Except Pediatric
	29-1228
	2,142
	10.1%
	83
	$77,896
	2.8%

	Family Medicine Physicians
	29-1215
	333
	9.6%
	13
	$179,150
	3.0%

	Optometrists
	29-1041
	302
	14.6%
	14
	$102,523
	3.3%

	Veterinarians
	29-1131
	800
	17.4%
	42
	$99,486
	3.5%

	Pharmacists
	29-1051
	2,341
	2.2%
	95
	$128,357
	3.8%

	Physical Therapists
	29-1123
	1,604
	21.8%
	107
	$99,341
	4.5%

	Judges, Magistrate Judges, and Magistrates
	23-1023
	446
	3.4%
	23
	$81,765
	4.7%

	Administrative Law Judges, Adjudicators, and Hearing Officers
	23-1021
	399
	-0.8%
	19
	$63,419
	4.8%

15 occupations with the lowest turnover rates relative to median earnings

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Chiropractors
	29-1011
	387
	15.5%
	15
	$61,027
	2.3%

	Psychiatric Technicians
	29-2053
	400
	24.5%
	41
	$29,661
	7.8%

	Emergency Medical Technicians and Paramedics
	29-2040
	939
	7.9%
	70
	$36,941
	6.7%

	Floral Designers
	27-1023
	297
	-17.5%
	19
	$28,704
	8.1%

	Physicians, All Other; and Ophthalmologists, Except Pediatric
	29-1228
	2,142
	10.1%
	83
	$77,896
	2.8%

	Exercise Physiologists
	29-1128
	188
	16.5%
	16
	$37,024
	6.9%

	Pharmacy Technicians
	29-2052
	3,103
	3.9%
	234
	$36,650
	7.2%

	Veterinary Technologists and Technicians
	29-2056
	1,023
	15.0%
	92
	$36,421
	7.5%

	Dietetic Technicians
	29-2051
	186
	14.0%
	17
	$36,566
	7.5%

	Legislators
	11-1031
	336
	10.7%
	29
	$37,738
	7.4%

	Administrative Law Judges, Adjudicators, and Hearing Officers
	23-1021
	399
	-0.8%
	19
	$63,419
	4.8%

	Ophthalmic Medical Technicians
	29-2057
	559
	21.5%
	56
	$36,650
	7.9%

	Respiratory Therapists
	29-1126
	1,057
	28.9%
	86
	$62,130
	5.3%

	Merchandise Displayers and Window Trimmers
	27-1026
	1,371
	4.4%
	132
	$30,285
	9.2%

	Couriers and Messengers
	43-5021
	582
	-5.8%
	51
	$30,597
	9.3%

Appendix C — Report: The largest, fastest-growing, and lowest-turnover occupations in our region

Source: ODJFS Bureau of Labor Market Information, Long-Term Occupational Projections for the Southeast Ohio JobsOhio region, 2020-2030. https://ohiolmi.com/Home/Projections/ProjectionsHome_08.16.23

Largest 10 occupations

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Farmers, Ranchers, and Other Agricultural Managers
	11-9013
	19,850
	4.5%
	2,047
	$73,050
	9.9%

	Fast Food and Counter Workers
	35-3023
	12,076
	8.4%
	2,652
	$21,341
	21.1%

	Cashiers
	41-2011
	10,405
	-11.3%
	1,657
	$22,235
	17.1%

	Retail Salespersons
	41-2031
	8,960
	-2.1%
	1,209
	$24,128
	13.7%

	Home Health and Personal Care Aides
	31-1120
	7,980
	24.1%
	1,270
	$23,192
	13.5%

	Registered Nurses
	29-1141
	7,944
	6.3%
	475
	$61,298
	5.3%

	Office Clerks, General
	43-9061
	7,231
	-3.1%
	788
	$34,653
	11.2%

	Heavy and Tractor-Trailer Truck Drivers
	53-3032
	7,123
	10.1%
	885
	$47,278
	11.4%

	Laborers and Freight, Stock, and Material Movers, Hand
	53-7062
	5,657
	7.8%
	813
	$32,677
	13.6%

	Elementary School Teachers, Except Special Education
	25-2021
	5,130
	3.3%
	386
	$61,318
	7.2%

10 fastest-growing occupations

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Nurse Practitioners
	29-1171
	736
	56.2%
	91
	$100,922
	6.8%

	Cooks, Restaurant
	35-2014
	2,096
	40.7%
	449
	$27,414
	17.4%

	Passenger Vehicle Drivers, Except Bus Drivers, Transit and Intercity
	53-3058
	1,540
	34.0%
	261
	$37,544
	13.6%

	Logisticians
	13-1081
	281
	32.4%
	37
	$77,022
	10.0%

	Roustabouts, Oil and Gas
	47-5071
	335
	29.2%
	55
	$29,765
	13.4%

	Physician Assistants
	29-1071
	124
	28.2%
	12
	$118,664
	6.5%

	Physical Therapist Assistants
	31-2021
	444
	27.5%
	72
	$60,112
	13.5%

	Photographers
	27-4021
	181
	27.1%
	24
	$30,597
	10.5%

	Self-Enrichment Education Teachers
	25-3021
	251
	25.9%
	38
	$30,035
	12.7%

	Medical and Health Services Managers
	11-9111
	897
	25.8%
	99
	$79,934
	8.5%

10 occupations with the lowest turnover rates

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Family Medicine Physicians
	29-1215
	197
	1.5%
	5
	NA
	2.5%

	Chiropractors
	29-1011
	116
	5.2%
	4
	$78,229
	2.6%

	Physicians, All Other; and Ophthalmologists, Except Pediatric
	29-1228
	1,166
	1.4%
	34
	$77,896
	2.7%

	Surgeons, Except Ophthalmologists
	29-1248
	101
	-2.0%
	3
	NA
	3.0%

	Dentists, General
	29-1021
	200
	0.0%
	6
	$164,070
	3.0%

	Optometrists
	29-1041
	280
	4.3%
	10
	$98,862
	3.2%

	Veterinarians
	29-1131
	229
	7.4%
	10
	$95,597
	3.5%

	Pharmacists
	29-1051
	818
	-4.8%
	26
	$126,610
	3.7%

	Physical Therapists
	29-1123
	475
	10.3%
	25
	$88,213
	4.2%

	Judges, Magistrate Judges, and Magistrates
	23-1023
	257
	0.4%
	12
	$99,050
	4.7%

10 occupations with the lowest turnover rates relative to median earnings

	Occupation
	SOC
	Current jobs
	10-yr change
	Annual openings
	Median earnings
	Turnover rate

	Radio and Television Announcers
	27-3011
	124
	-11.3%
	9
	$23,130
	8.1%

	Pharmacy Technicians
	29-2052
	1,216
	1.6%
	89
	$29,266
	7.2%

	Floral Designers
	27-1023
	130
	-22.3%
	8
	$25,314
	8.5%

	Chiropractors
	29-1011
	116
	5.2%
	4
	$78,229
	2.6%

	Emergency Medical Technicians and Paramedics
	29-2040
	1,049
	7.9%
	78
	$36,941
	6.7%

	Physicians, All Other; and Ophthalmologists, Except Pediatric
	29-1228
	1,166
	1.4%
	34
	$77,896
	2.7%

	Legislators
	11-1031
	321
	4.7%
	26
	$36,208
	7.5%

	Respiratory Therapists
	29-1126
	375
	20.8%
	27
	$59,322
	5.1%

	Couriers and Messengers
	43-5021
	208
	-5.3%
	18
	$28,246
	9.1%

	Merchandise Displayers and Window Trimmers
	27-1026
	266
	0.4%
	24
	$29,515
	9.0%

EPUB/media/file4.png

EPUB/media/file13.png

EPUB/media/file9.png

EPUB/media/file10.png

EPUB/media/file5.png

EPUB/media/file15.png

EPUB/media/file14.png

EPUB/media/file6.png

EPUB/nav.xhtml

Table of contents

		Preface

		1 1 Software setup and overview		1.1 1.1 Installation

		1.2 1.2 Using the R Terminal

		1.3 1.3 Installing R packages

		1.4 1.4 Using an IDE		1.4.1 1.4.1 R Studio

		1.4.2 1.4.2 Visual Studio Code

		1.5 1.5 Creating a project

		1.6 1.6 Writing an R script

		Exersices		1.6.1 1.6.1 Exercise 1

		1.6.2 1.6.2 Exercise 2

		Extra: Keeping R up-to-date		1.6.3 1.6.3 Updating R packages

		1.6.4 1.6.4 Updating R

		Extra: R Profile and Environment		1.6.5 1.6.5 R profile

		1.6.6 1.6.6 R environment

		2 2 Importing and cleaning data		2.1 2.1 Creating R data objects

		2.2 2.2 Importing data		2.2.1 2.2.1 By file format

		2.2.2 2.2.2 By file location

		2.2.3 2.2.3 From a database

		2.2.4 2.2.4 From an Application Program Interface (API)

		2.3 2.3 Tidy data

		2.4 2.4 In Practice: Dataset #1 – IPEDS data		2.4.1 2.4.1 Dataset #1 complete code

		2.5 2.5 In Practice: Dataset #2 – Occupation Projections data		2.5.1 2.5.1 Dataset #2 complete code

		Exercises		2.5.2 2.5.2 Exercise 1

		2.5.3 2.5.3 Exercise 2

		Extra: Exporting data

		3 3 Statistical analysis & data visualizations		3.1 3.1 Statistical analysis		3.1.1 3.1.1 Descriptive statistics

		3.1.2 3.1.2 Inferential statistics: linear regression

		3.2 3.2 Data visualizations		3.2.1 3.2.1 Visualization #1

		3.2.2 3.2.2 Visualization #2

		Exercises		3.2.3 3.2.3 Exercise 1

		3.2.4 3.2.4 Exercise 2

		Extra: logistic regression

		Extra: propensity score matching

		4 4 Building parameterized reports		4.1 4.1 Installing Quarto

		4.2 4.2 Creating a Quarto document		4.2.1 4.2.1 Quarto document header

		4.2.2 4.2.2 Basic markdown

		4.2.3 4.2.3 Code blocks

		4.3 4.3 In Practice: A full report build		4.3.1 4.3.1 Starting a new report

		4.3.2 4.3.2 Adding content

		4.3.3 4.3.3 Full render

		4.4 4.4 Parameterizing your report

		Exercises		4.4.1 4.4.1 Exercise 1

		4.4.2 4.4.2 Exercise 2

		Extra: Other Quarto document types

		5 5 Collaborating on code		5.1 5.1 Setting up GitHub

		5.2 5.2 An overview of GitHub

		5.3 5.3 Setting up Git

		5.4 5.4 Syncing a project with GitHub

		5.5 5.5 The basics of Git operations

		Exercises		5.5.1 5.5.1 Exercise 1

		5.5.2 5.5.2 Exercise 2

		Extra: About GitHub Pages

		References

		A Appendix A — New Quarto Project		Quarto

		B Appendix B — Report: The largest, fastest-growing, and lowest-turnover occupations in Central Ohio		Largest 15 occupations

		15 fastest-growing occupations

		15 occupations with the lowest turnover rates

		15 occupations with the lowest turnover rates relative to median earnings

		C Appendix C — Report: The largest, fastest-growing, and lowest-turnover occupations in our region		Largest 10 occupations

		10 fastest-growing occupations

		10 occupations with the lowest turnover rates

		10 occupations with the lowest turnover rates relative to median earnings

 		
 Title Page

 		
 Cover

EPUB/media/file11.png

EPUB/media/cover.png

EPUB/media/file1.png

EPUB/media/file2.png

EPUB/media/file7.png

EPUB/media/file12.png

EPUB/media/file3.png

EPUB/media/file0.png

EPUB/media/file8.png

